# NOT RUN {
if (packageVersion("survival")>="3.2.9") {
data(cancer, package="survival")
} else {
data(veteran, package="survival")
}
# pcoxtime
lam <- 0.1
alp <- 1
pfit1 <- pcoxtime(Surv(time, status) ~ factor(trt) + karno + diagtime + age + prior
, data = veteran
, lambda = lam
, alpha = alp
)
# coxph
cfit1 <- coxph(Surv(time, status) ~ factor(trt) + karno + diagtime + age + prior
, data = veteran
, method = "breslow"
, x = TRUE
, y = TRUE
)
# Evaluate model performance at 90, 180, 365 time points
score_obj <- Score(list("coxph" = cfit1, "pcox" = pfit1)
, Surv(time, status) ~ 1
, data = veteran
, plots = "roc"
, metrics = c("auc", "brier")
, B = 10
, times = c(90, 180, 365)
)
# Plot AUC
plot(score_obj, type = "auc")
# Plot ROC
plot(score_obj, type = "roc")
# Plot brier
plot(score_obj, type = "brier")
# Prediction error using pec package
# }
# NOT RUN {
if (require("pec")) {
pec_fit <- pec(list("coxph" = cfit1, "pcox" = pfit1)
, Surv(time, status) ~ 1
, data = veteran
, splitMethod = "Boot632plus"
, keep.matrix = TRUE
)
plot(pec_fit)
}
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab