Learn R Programming

'pcts' is an R package for modelling periodically correlated and periodically integrated time series.

Installing pcts

Install the latest stable version of pcts from CRAN:

install.packages("pcts")

You can install the development version of pcts from Github:

library(remotes)
install_github("GeoBosh/pcts")

Overview

Periodic time series can be created with pcts(). Models are fitted with fitPM() and several other functions. To obtain periodic properties, such as sample periodic autocorrelations of periodic time series or theoretical periodic autocorrelations of periodic models, just call the respective functions (here autocorrelations() and partialAutocorrelations()) and they will compute the relevant property depending on the class of the argument, see the examples in the documentation.

A good place to start is the help topic ?pcts-package. Several datasets are available for examples and experiments. For example, ?dataFranses1996 contains the data from Franses (1996). The datasets are from classes "mts" or "ts" (the standard R classes for time series), so can be used without loading pcts, if desired.

Copy Link

Version

Install

install.packages('pcts')

Monthly Downloads

299

Version

0.15.8

License

GPL (>= 2)

Issues

Pull Requests

Stars

Forks

Maintainer

Georgi Boshnakov

Last Published

March 17th, 2025

Functions in pcts (0.15.8)

ModelCycleSpec-class

Class ModelCycleSpec
PeriodicArModel-class

Class PeriodicArModel
PartialPeriodicAutocorrelations-class

Class PartialPeriodicAutocorrelations
PeriodicArmaFilter-class

Class "PeriodicArmaFilter"
PeriodicAutocovariances-class

Class PeriodicAutocovariances
PeriodicAutocorrelations-class

Class PeriodicAutocorrelations
PeriodicArmaModel-class

Class PeriodicArmaModel
PartialCycle-class

Class PartialCycle
PeriodicArModel-methods

Create objects from class PeriodicArModel
PeriodicArmaSpec-class

Class PeriodicArmaSpec
Pctime

Convert between Pctime and datetime objects
PeriodicVector-class

Class PeriodicVector
PeriodicInterceptSpec-class

Class PeriodicInterceptSpec
PeriodicMTS_zooreg-class

Class "PeriodicMTS_zooreg"
PeriodicIntegratedArmaSpec-class

Class PeriodicIntegratedArmaSpec
PeriodicSPFilter-class

Class PeriodicSPFilter
PeriodicFilterModel-class

Class PeriodicFilterModel
PeriodicTS-class

Class "PeriodicTS"
PeriodicBJFilter-class

Class PeriodicBJFilter
PeriodicMaModel-class

Class PeriodicMaModel
PeriodicMTS-class

Class "PeriodicMTS"
PiPeriodicMaModel-class

Class PiPeriodicMaModel
PiPeriodicArmaModel-class

Class PiPeriodicArmaModel
PeriodicMTS_ts-class

Class "PeriodicMTS_ts"
VirtualPeriodicArmaModel-class

Class VirtualPeriodicArmaModel
PeriodicTS_ts-class

Class "PeriodicTS_ts"
SamplePeriodicAutocovariances-class

Class SamplePeriodicAutocovariances
PeriodicTimeSeries-class

Class PeriodicTimeSeries
SiPeriodicArmaModel-class

Class SiPeriodicArmaModel
SamplePeriodicAutocorrelations-class

Class SamplePeriodicAutocorrelations
PiPeriodicArModel-class

Class PiPeriodicArModel
SiPeriodicArModel-class

Class SiPeriodicArModel
VirtualPeriodicAutocovarianceModel-class

~~ Dummy title ~~
VirtualPeriodicAutocorrelations-class

~~ Dummy title ~~
allSeasons

Get names of seasons
VirtualPeriodicArModel-class

~~ Dummy title ~~
SiPeriodicMaModel-class

Class SiPeriodicMaModel
SLTypeMatrix-class

Class SLTypeMatrix
VirtualPeriodicMeanModel-class

~~ Dummy title ~~
VirtualPeriodicMaModel-class

~~ Dummy title ~~
PeriodicTS_zooreg-class

Class "PeriodicTS_zooreg"
SimpleCycle-class

Class SimpleCycle
SubsetPM-class

Class SubsetPM
VirtualPeriodicStationaryModel-class

~~ Dummy title ~~
autocovariances-methods

Compute autocovariances and periodic autocovariances
filterPoly-methods

~~ Dummy title ~~
availStart

Time of first or last non-NA value
Vec

Core data of periodic time series
as_datetime-methods

Methods for as_datetime in package pcts
VirtualPeriodicAutocovariances-class

~~ Dummy title ~~
VirtualPeriodicWhiteNoiseModel-class

~~ Dummy title ~~
filterPolyCoef-methods

~~ Dummy title ~~
VirtualPeriodicFilterModel-class

~~ Dummy title ~~
VirtualPeriodicModel-class

~~ Dummy title ~~
backwardPartialCoefficients-methods

Compute periodic backward partial coefficients
ex1f

An example PAR autocorrelation function
as_date-methods

Replace methods for as_date in package pcts
autocorrelations-methods

Compute autocorrelations and periodic autocorrelations
filterCoef-methods

Get the coefficients of a periodic filter
mC.ss

Create environment for mc-fitting
backwardPartialVariances-methods

Compute periodic backward partial variances
meanvarcheck

Asymptotic covariance matrix of periodic mean
mcOptimCore-class

Class mcOptimCore
maxLag-methods

Methods for function maxLag() in package 'pcts'
nSeasons-methods

Number of seasons of a periodic object
partialAutocorrelations-methods

Compute periodic partial autocorrelations
VirtualPeriodicMonicFilter-class

~~ Dummy title ~~
fitPM

Fit periodic time series models
partialCoefficients-methods

Compute periodic partial coefficients
modelCycle

Get the cycle of a periodic object
partialVariances-methods

Compute periodic partial variances
nTicks-methods

Number of observations in a time series
pcalg1util

Give partial periodic autocorrelations or other partial prediction quantities for a pcAcvf object.
fit_trigPAR_optim

Fit a subset trigonometric PAR model
pc.filter.xarma

Filter time series with periodic arma filters
dataFranses1996

Example data from Franses (1996)
num2pcpar

Fit PAR model using sample autocorrelations
nCycles

Basic information about periodic ts objects
pc.hat.h

function to compute estimates of the h weights
pcarma_solve

Functions to compute various characteristics of a PCARMA model
pcacfMat

Compute PAR autocovariance matrix
parcovmatlist

Compute asymptotic covariance matrix for PAR model
pcarma_unvec

Functions for work with a simple list specification of pcarma models
partialAutocovariances-methods

Compute periodic partial autocovariances
pcAR2acf

Compute periodic autocorrelations from PAR coefficients
pcalg1

Periodic Levinson-Durbin algorithm
sim_parCoef

Generate a periodic autoregression model
sim_pc

Simulate periodically correlated ARMA series
pcts-deprecated

Deprecated Functions and classes in Package pcts
zooreg-class

Virtual S4 class zooreg
pwn_McLeodLjungBox_test

McLeod-Ljung-Box test for periodic white noise
pcApply-methods

Apply a function to each season
permean2intercept

Convert between periodic centering and intercepts
date<--methods

Replace methods for date in package pcts
pcTest-methods

Test for periodicity
permodelmf

Compute the multi-companion form of a per model
pcts

Create objects from periodic time series classes
sim_pwn

Simulate periodic white noise
four_stocks_since2016_01_01

Data for four stocks since 2016-01-01
sl_utils

Functions for some basic operations with seasons
head-methods

Methods for function head() in package pcts
pcarma_acvf2model

Fit a PC-ARMA model to a periodic autocovariance function
[-methods

Indexing of objects from classes in package pcts
window

Periodic methods for base R functions
pcAr.ss

Compute the sum of squares for a given PAR model
pc.filter

Applies a periodic ARMA filter to a time series
pc_sdfactor

Compute normalising factors
pclsdf

Fit PAR models using least squares
pclspiar

Fit a periodically integrated autoregressive model
pcacf_pwn_var

Variances of sample periodic autocorrelations
periodic_acf1_test

McLeod's test for periodic autocorrelation
zoo-class

Class zoo made S4
pcCycle-methods

Create or extract Cycle objects
pcMean-methods

Compute periodic mean
pi1ar2par

Convert PIAR coefficients to PAR coefficients
seqSeasons-methods

Methods for seqSeasons() in package pcts
pcPlot

Plot periodic time series
pcts_exdata

Periodic time series objects for examples
pcts-package

pd <- packageDescription("pcts") lb <- library(help="pcts", character.only=TRUE) lbinfo <- if(!is.null(lb$info[[2]])) lb$info[[2]] else "No_matches" anypat <- function(string, pat, ...){ any(sapply(pat, function(x) grepl(x, string, ...))) } lbsubset <- function(lbinfo, pat){ if(length(lbinfo) == 0) return("No entries") ind.start <- which(sapply(lbinfo, function(x) anypat(x, pat))) if(length(ind.start) == 0) return("No entries") ind.ws <- which(grepl("^[[:space:]]+", lbinfo)) res <- ind.start for(ind in ind.start){ while(any((ind+1) - ind.ws == 0)){ ind <- ind + 1 res <- c(res, ind) } } lbinfo[ sort(res) ] } lbpaste <- function(pat) paste("\\preformatted{", {wrk <- lbsubset(lbinfo,pat); wrk <- gsub("(^[^\\]?%)|(([^\\])%)", paste0("\\3", "\\\\", "%"), wrk); paste(if(length(wrk) > 0) wrk else "No entries", collapse="\n")}, "}", sep="") pd$Title
sigmaSq-methods

Methods for sigmaSq in package pcts
tail-methods

Methods for function tail() in package pcts
[[-methods

Methods for function`[[` in package 'pcts'
[<--methods

Index assignments for objects from classes in package pcts
pcts_reexports

Objects exported from other packages
test_piar

Test for periodic integration
sim_parAcvf

Create a random periodic autocovariance function
pdSafeParOrder

Functions for some basic operations with seasons
$-methods

Methods for function$ in package 'pcts'
unitCycle-methods

Methods for unitCycle and unitSeason in package pcts
unitCycle<--methods

Methods for `unitCycle<-` and `unitSeason<-` in package pcts
FittedPeriodicArmaModel-class

Class FittedPeriodicArmaModel
BareCycle-class

Class BareCycle
BuiltinCycle-class

Class "BuiltinCycle" and its subclasses in package 'pcts'
BasicCycle-class

Class BasicCycle
Cyclic

Create objects from class Cyclic
Fraser2017

Fraser River at Hope, mean monthly flow
Cyclic-class

Class "Cyclic"
FittedPeriodicArModel-class

Class FittedPeriodicArModel
LegacyPeriodicFilterModel-class

Class LegacyPeriodicFilterModel