d_norm_1 <- as_d(dnorm)
d_norm_2 <- as_d(dnorm, mean = 1)
roc <- summ_roc(d_norm_1, d_norm_2)
head(roc)
# `summ_rocauc()` is equivalent to probability of `g > f`
summ_rocauc(d_norm_1, d_norm_2)
summ_prob_true(d_norm_2 > d_norm_1)
# Plotting
roc_plot(roc)
roc_lines(summ_roc(d_norm_2, d_norm_1), col = "blue")
# For "discrete" functions `summ_rocauc()` can produce different outputs
d_dis_1 <- new_d(1:2, "discrete")
d_dis_2 <- new_d(2:3, "discrete")
summ_rocauc(d_dis_1, d_dis_2)
summ_rocauc(d_dis_1, d_dis_2, method = "pessimistic")
summ_rocauc(d_dis_1, d_dis_2, method = "optimistic")
## These methods correspond to different ways of plotting ROC curves
roc <- summ_roc(d_dis_1, d_dis_2)
## Default line plot for "expected" method
roc_plot(roc, main = "Different type of plotting ROC curve")
## Method "pessimistic"
roc_lines(roc, type = "s", col = "blue")
## Method "optimistic"
roc_lines(roc, type = "S", col = "green")
Run the code above in your browser using DataLab