Learn R Programming

pdynmc (version 0.9.12)

FDLS: First Difference Least Squares (FDLS) Estimator of Han and Phillips (2010).

Description

FDLS computes closed form estimator for lag parameter of linear dynamic panel data model based on first difference least squares (FDLS) estimator.

Usage

FDLS(dat, varname.i, varname.t, varname.y)

Value

An object of class `numeric` that contains the coefficient estimate for the lag parameter according to the two roots of the quadratic equation.

Arguments

dat

A dataset.

varname.i

The name of the cross-section identifier.

varname.t

The name of the time-series identifier.

varname.y

A character string denoting the name of the dependent variable in the dataset.

Author

Joachim Schnurbus, Markus Fritsch

Details

The function estimates a linear dynamic panel data model of the form $$y_{i,t} = y_{i,t-1} \rho_1 + a_i + \varepsilon_{i,t}$$ where \(y_{i,t-1}\) is the lagged dependent variable, \(\rho_1\) is the lag parameter, \(a_i\) is an unobserved individual specific effect, and \(\varepsilon_{i,t}\) is an idiosyncratic remainder component. The model structure accounts for unobserved individual specific heterogeneity and dynamics. Note that more general lag structures and further covariates are beyond the scope of the current implementation in pdynmc.

More details on the FDLS estimator and its properties are provided in HanPhi2010;textualpdynmc.

References

Examples

Run this code
## Load data
data(cigDemand, package = "pdynmc")
dat <- cigDemand

## Code example
m1 <- FDLS(dat = dat, varname.i = "state", varname.t = "year", varname.y = "packpc")


Run the code above in your browser using DataLab