Learn R Programming

pdynmc (version 0.9.12)

wmat.pdynmc: Extract Weighting Matrix of Fitted Model.

Description

wmat.pdynmc extracts weighting matrix from an object of class `pdynmc`.

Usage

# S3 method for pdynmc
wmat(object, step = object$iter, ...)

Value

Extract weighting matrix from an object of class `pdynmc`.

Arguments

object

An object of class `pdynmc`.

step

An integer denoting the iteration step for which fitted values are extracted (defaults to last iteration step used for obtaining parameter estimates).

...

further arguments.

Author

Markus Fritsch

See Also

pdynmc for fitting a linear dynamic panel data model.

Examples

Run this code
## Load data
data(ABdata, package = "pdynmc")
dat <- ABdata
dat[,c(4:7)] <- log(dat[,c(4:7)])
dat <- dat[c(1:140), ]

## Code example
m1 <- pdynmc(dat = dat, varname.i = "firm", varname.t = "year",
    use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = FALSE,
    include.y = TRUE, varname.y = "emp", lagTerms.y = 2,
    fur.con = TRUE, fur.con.diff = TRUE, fur.con.lev = FALSE,
    varname.reg.fur = c("wage", "capital", "output"), lagTerms.reg.fur = c(1,2,2),
    include.dum = TRUE, dum.diff = TRUE, dum.lev = FALSE, varname.dum = "year",
    w.mat = "iid.err", std.err = "corrected", estimation = "onestep",
    opt.meth = "none")
wmat(m1)

# \donttest{
## Load data
 data(ABdata, package = "pdynmc")
 dat <- ABdata
 dat[,c(4:7)] <- log(dat[,c(4:7)])

 m1 <- pdynmc(dat = dat, varname.i = "firm", varname.t = "year",
    use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = FALSE,
    include.y = TRUE, varname.y = "emp", lagTerms.y = 2,
    fur.con = TRUE, fur.con.diff = TRUE, fur.con.lev = FALSE,
    varname.reg.fur = c("wage", "capital", "output"), lagTerms.reg.fur = c(1,2,2),
    include.dum = TRUE, dum.diff = TRUE, dum.lev = FALSE, varname.dum = "year",
    w.mat = "iid.err", std.err = "corrected", estimation = "onestep",
    opt.meth = "none")
 wmat(m1)
# }


Run the code above in your browser using DataLab