Learn R Programming

pdynmc (version 0.9.6)

print.summary.pdynmc: Print Summary of Fitted Model Object.

Description

print.summary.pdynmc prints the summary for objects of class `pdynmc`.

Usage

# S3 method for summary.pdynmc
print(
  x,
  digits = max(3, getOption("digits") - 3),
  signif.stars = getOption("show.signif.stars"),
  ...
)

Arguments

x

An object of class `summary.pdynmc`.

digits

An integer indicating the maximum number of digits to display in the object.

signif.stars

Argument is defined as in options.

...

further arguments.

Value

Print information on objects of class `summary.pdynmc`.

See Also

pdynmc for fitting a linear dynamic panel data model.

Examples

Run this code
# NOT RUN {
## Load data from plm package
if(!requireNamespace("plm", quietly = TRUE)){
 stop("Dataset from package \"plm\" needed for this example.
 Please install the package.", call. = FALSE)
} else{
 data(EmplUK, package = "plm")
 dat <- EmplUK
 dat[,c(4:7)] <- log(dat[,c(4:7)])
 dat <- dat[c(1:140), ]

## Code example
 m1 <- pdynmc(dat = dat, varname.i = "firm", varname.t = "year",
    use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = FALSE,
    include.y = TRUE, varname.y = "emp", lagTerms.y = 2,
    fur.con = TRUE, fur.con.diff = TRUE, fur.con.lev = FALSE,
    varname.reg.fur = c("wage", "capital", "output"), lagTerms.reg.fur = c(1,2,2),
    include.dum = TRUE, dum.diff = TRUE, dum.lev = FALSE, varname.dum = "year",
    w.mat = "iid.err", std.err = "corrected", estimation = "onestep",
    opt.meth = "none")
 summary(m1)
}

# }
# NOT RUN {
## Load data from plm package
if(!requireNamespace("plm", quietly = TRUE)){
 stop("Dataset from package \"plm\" needed for this example.
 Please install the package.", call. = FALSE)
} else{
 data(EmplUK, package = "plm")
 dat <- EmplUK
 dat[,c(4:7)] <- log(dat[,c(4:7)])

 m1 <- pdynmc(dat = dat, varname.i = "firm", varname.t = "year",
    use.mc.diff = TRUE, use.mc.lev = FALSE, use.mc.nonlin = FALSE,
    include.y = TRUE, varname.y = "emp", lagTerms.y = 2,
    fur.con = TRUE, fur.con.diff = TRUE, fur.con.lev = FALSE,
    varname.reg.fur = c("wage", "capital", "output"), lagTerms.reg.fur = c(1,2,2),
    include.dum = TRUE, dum.diff = TRUE, dum.lev = FALSE, varname.dum = "year",
    w.mat = "iid.err", std.err = "corrected", estimation = "onestep",
    opt.meth = "none")
 summary(m1)
}
# }
# NOT RUN {

# }

Run the code above in your browser using DataLab