## Not run:
# library(riskRegression)
# library(prodlim)
# library(lava)
# library(cmprsk)
# library(pec)
# m <- crModel()
# m <- addvar(m,c('X1','X2','X3','X4','X5','X6','X7','X8','X9','X10'))
# distribution(m,c("X2","X7","X9")) <- binomial.lvm()
# regression(m,eventtime1~X1+X2+X5+X9) <- c(-1,1,0.5,0.8)
# set.seed(100)
# d <- sim(m,100)
# ## full formula
# ff <- Hist(time, event) ~ X1 + X2 + X3 + X4 +X5 + X6 + X7+ X8 + X9 + X10
#
# # Fit full model with FGR
# fg <- FGR(ff,cause=1,data=d)
#
# # Backward selection based on the AIC
# sfgAIC <- selectFGR(ff, data=d, rule="AIC", direction="backward")
#
# sfgAIC$fit # Final FGR-model with selected variables
#
# # Risk reclassification plot at time = 4
# plot(predictEventProb(fg,times=4,newdata=d),
# predictEventProb(sfgAIC,times=4,newdata=d))
#
# # Backward selection based on the BIC, while forcing
# # the last two variables (X9 and X10) in the model
# sfgBIC <- selectFGR(ff, data=d, rule="BIC", direction="backward",
# scope.min=~X9+X10)
#
# ## apparent performance
# pec(list(full.model=fg,selectedAIC=sfgAIC,selectedBIC=sfgBIC),
# formula=Hist(time, event)~1,
# data=d)
#
#
# ## bootstrap cross-validation performance
# set.seed(7)
# pec(list(full.model=fg,selectedAIC=sfgAIC,selectedBIC=sfgBIC),
# formula=Hist(time, event)~1,
# data=d,
# B=5,
# splitMethod="bootcv")
# ## End(Not run)
Run the code above in your browser using DataLab