## make up a pedigree
id <- c("a1", "a2", "a3", "a4", "a5", "a6", "a7", "a8", "a9")
dam <- c(NA, NA, NA, "a1", "a1", "a1", "a4", "a4", "a4")
sire <- c(NA, NA, NA, "a2", "a2", "a2", "a5", "a6", "a6")
pedigree <- as.data.frame(cbind(id, sire, dam))
traits <- 2
## no correlations
randomA <- diag(4)
randomE <- diag(4)
parentalA <- c("d", "d", "m", "m")
parentalE <- c("d", "d", "m", "m")
## generate phenoypic data based on this architecture
phen_sim(
pedigree = pedigree, traits = 2, randomA = randomA, randomE = randomE,
parentalA = parentalA, parentalE = parentalE
)
## let's do it again but see how the phenotypes were composed
phen_sim(
pedigree = pedigree, traits = 2, randomA = randomA, randomE = randomE,
parentalA = parentalA, parentalE = parentalE, returnAllEffects = TRUE
)
Run the code above in your browser using DataLab