Rdocumentation
powered by
Learn R Programming
penRvine (version 0.2)
Flexible R-Vines Estimation Using Bivariate Penalized Splines
Description
Offers routines for estimating densities and copula distribution of R-vines using penalized splines.
Copy Link
Link to current version
Version
Version
0.2
Install
install.packages('penRvine')
Monthly Downloads
4
Version
0.2
License
GPL (>= 2)
Maintainer
Christian Schellhase
Last Published
May 21st, 2017
Functions in penRvine (0.2)
Search all functions
f.hat.val
Calculating the actual fitted values 'f.hat.val' of the estimated density function
independ.test
Testing for independence between two margins of pair-copulas
my.IC
Calculating the AIC-, cAIC- and BIC-value
my.loop
Iterative loop for calculating the optimal coefficients 'v'.
RVineMatrix
Notation of the R-vine Matrix
bernstein
Flexible Pair-Copula Estimation in D-vines with Penalized Splines
pen.matrix
Calculating the penalty matrix P
penRvine-package
Flexible R-vines Estimation Using Bivariate Penalized Splines
Derv1
Calculating the first derivative of the paircopula likelihood function w.r.t. parameter b
Derv2
Calculating the second order derivative of the paircopula likelihood function w.r.t. parameter b
paircopula
Flexible Pair-Copula Estimation in R-vines using Bivariate Penalized Splines
pen.log.like
Calculating the log likelihood
lam.search
Search optimal starting vlaue for lambda
marg.likelihood
Calculating the marginal likelihood
new.weights
Calculating new weights v.
order.vine,test.ind
Ordering the first level of the R-vine.
cal.vine
Flexible Pair-Copula Estimation in R-vines with Penalized
cond.cop
Flexible Pair-Copula Estimation in R-vines with Penalized
plot.paircopula
Flexible Pair-Copula Estimation in D-vines with Penalized
vine
Flexible Pair-Copula Estimation in vines with Penalized Splines