Learn R Programming

penalizedcdf (version 0.1.0)

lla: LLA approximation for CDF penalty

Description

Linearly approximate a part of the objective function to greatly speed up computations.

Usage

lla(b.o,
    lmb.rho,
    bm_gm,
    nu,
    nstep.lla = 100L,
    eps.lla = 1E-6)

Value

b

Vector of the estimated sparse-solution.

Conv

Convergence check (0 if converged).

nstep.lla

Number of iterations done.

Arguments

b.o

Vector of sparse-solution.

lmb.rho

Lambda-rho ratio.

bm_gm

Vector of pseudo-solution

nu

Shape parameter of the penalty.

nstep.lla

Maximum number of iterations of the LLA-algorithm (if used).

eps.lla

Convergence threshhold of the LLA-algorithm (if used).

Details

The LLA approximation allows the computationally intensive part to be treated as a weighted LASSO (Tibshirani, 1996) problem. In this way the computational effort is significantly less while maintaining satisfactory accuracy of the results. See Zou and Li (2008).

References

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1):267–288.

Zou, H. and Li, R. (2008). One-step sparse estimates in nonconcave penalized likelihood models. Annals of statistics, 36(4):1509