# generate example data
set.seed(1234)
p = 4 # number of longitudinal predictors
simdata = simulate_prclmm_data(n = 100, p = p, p.relev = 2,
seed = 123, t.values = c(0, 0.2, 0.5, 1, 1.5, 2))
# specify options for cluster bootstrap optimism correction
# procedure and for parallel computing
do.bootstrap = FALSE
# IMPORTANT: set do.bootstrap = TRUE to compute the optimism correction!
n.boots = ifelse(do.bootstrap, 100, 0)
more.cores = FALSE
# IMPORTANT: set more.cores = TRUE to parallelize and speed computations up!
if (!more.cores) n.cores = 1
if (more.cores) {
# identify number of available cores on your machine
n.cores = parallel::detectCores()
if (is.na(n.cores)) n.cores = 8
}
# step 1 of PRC-LMM: estimate the LMMs
y.names = paste('marker', 1:p, sep = '')
step1 = fit_lmms(y.names = y.names,
fixefs = ~ age, ranefs = ~ age | id,
long.data = simdata$long.data,
surv.data = simdata$surv.data,
t.from.base = t.from.base,
n.boots = n.boots, n.cores = n.cores)
# estimated betas and variances for the 3rd marker:
summary(step1, 'marker3', 'betas')
summary(step1, 'marker3', 'variances')
# usual T table:
summary(step1, 'marker3', 'tTable')
Run the code above in your browser using DataLab