Learn R Programming

pense (version 2.2.2)

Penalized Elastic Net S/MM-Estimator of Regression

Description

Robust penalized (adaptive) elastic net S and M estimators for linear regression. The methods are proposed in Cohen Freue, G. V., Kepplinger, D., Salibián-Barrera, M., and Smucler, E. (2019) . The package implements the extensions and algorithms described in Kepplinger, D. (2020) .

Copy Link

Version

Install

install.packages('pense')

Monthly Downloads

254

Version

2.2.2

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

David Kepplinger

Last Published

July 27th, 2024

Functions in pense (2.2.2)

elnet_cv

Cross-validation for Least-Squares (Adaptive) Elastic Net Estimates
en_lars_options

Use the LARS Elastic Net Algorithm
en_admm_options

Use the ADMM Elastic Net Algorithm
enpy

Deprecated
initest_options

Deprecated
mscale_derivative

Compute the Gradient and Hessian of the M-Scale Function
enpy_options

Options for the ENPY Algorithm
mscale_algorithm_options

Options for the M-scale Estimation Algorithm
en_cd_options

Use Coordinate Descent to Solve Elastic Net Problems
mloc

Compute the M-estimate of Location
mscale

Compute the M-Scale of Centered Values
mlocscale

Compute the M-estimate of Location and Scale
mm_algorithm_options

MM-Algorithm to Compute Penalized Elastic Net S- and M-Estimates
enpy_initial_estimates

ENPY Initial Estimates for EN S-Estimators
mstep_options

Deprecated
pensem

Deprecated Alias of pensem_cv
plot.pense_cvfit

Plot Method for Penalized Estimates With Cross-Validation
prinsens

Principal Sensitivity Components
pense

Compute (Adaptive) Elastic Net S-Estimates of Regression
pensem_cv

Compute Penalized Elastic Net M-Estimates from PENSE
prediction_performance

Prediction Performance of Adaptive PENSE Fits
residuals.pense_fit

Extract Residuals
summary.pense_cvfit

Summarize Cross-Validated PENSE Fit
plot.pense_fit

Plot Method for Penalized Estimates
regmest_cv

Cross-validation for (Adaptive) Elastic Net M-Estimates
starting_point

Create Starting Points for the PENSE Algorithm
residuals.pense_cvfit

Extract Residuals
print.nsoptim_metrics

Print Metrics
regmest

Compute (Adaptive) Elastic Net M-Estimates of Regression
pense_cv

Cross-validation for (Adaptive) PENSE Estimates
pense_options

Deprecated
predict.pense_cvfit

Predict Method for PENSE Fits
rho_function

List Available Rho Functions
tau_size

Compute the Tau-Scale of Centered Values
predict.pense_fit

Predict Method for PENSE Fits
cd_algorithm_options

Coordinate Descent (CD) Algorithm to Compute Penalized Elastic Net S-estimates
coef.pense_cvfit

Extract Coefficient Estimates
deprecated_en_options

Deprecated
.run_replicated_cv

Run replicated K-fold CV with random splits
coef.pense_fit

Extract Coefficient Estimates
consistency_const

Get the Constant for Consistency for the M-Scale
elnet

Compute the Least Squares (Adaptive) Elastic Net Regularization Path
en_dal_options

Use the DAL Elastic Net Algorithm
.standardize_data

Standardize data
.approx_match

Approximate Value Matching
en_ridge_options

Ridge optimizer using an Augmented data matrix. Only available for Ridge problems (`alpha=0``) and selected automatically in this case.
.bisquare_consistency_const

Get the Constant for Consistency for the M-Scale Using the Bisquare Rho Function
.find_stable_bdb_bisquare

Determine a breakdown point with stable numerical properties of the M-scale with Tukey's bisquare rho function.
en_algorithm_options

Control the Algorithm to Compute (Weighted) Least-Squares Elastic Net Estimates