Compute mean square error of linear models.
performance_mse(model, ...)mse(model, ...)
Numeric, the mean square error of model
.
A model.
Arguments passed to or from other methods.
The mean square error is the mean of the sum of squared residuals, i.e. it measures the average of the squares of the errors. Less technically speaking, the mean square error can be considered as the variance of the residuals, i.e. the variation in the outcome the model doesn't explain. Lower values (closer to zero) indicate better fit.
data(mtcars)
m <- lm(mpg ~ hp + gear, data = mtcars)
performance_mse(m)
Run the code above in your browser using DataLab