# NOT RUN {
library(performance)
if (require("rstanarm") && require("rstantools")) {
  model <- stan_glm(mpg ~ wt + cyl, data = mtcars, chains = 1, iter = 500, refresh = 0)
  r2_bayes(model)
  model <- stan_lmer(
    Petal.Length ~ Petal.Width + (1 | Species),
    data = iris,
    chains = 1,
    iter = 500,
    refresh = 0
  )
  r2_bayes(model)
}
# }
# NOT RUN {
if (require("BayesFactor")) {
  data(mtcars)
  BFM <- generalTestBF(mpg ~ qsec + gear, data = mtcars, progress = FALSE)
  FM <- lm(mpg ~ qsec + gear, data = mtcars)
  r2_bayes(FM)
  r2_bayes(BFM[3])
  r2_bayes(BFM, average = TRUE) # across all models
  # with random effects:
  mtcars$gear <- factor(mtcars$gear)
  model <- lmBF(
    mpg ~ hp + cyl + gear + gear:wt,
    mtcars,
    progress = FALSE,
    whichRandom = c("gear", "gear:wt")
  )
  r2_bayes(model)
}
if (require("brms")) {
  model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
  r2_bayes(model)
  model <- brms::brm(Petal.Length ~ Petal.Width + (1 | Species), data = iris)
  r2_bayes(model)
}
# }
Run the code above in your browser using DataLab