## Not run:
# ## Estimating MSE for 3 variants of both
# ## regression trees and SVMs, on two data sets, using one repetition
# ## of 10-fold CV
# library(e1071)
# data(iris)
# data(Satellite,package="mlbench")
# data(LetterRecognition,package="mlbench")
#
#
# ## running the estimation experiment
# res <- performanceEstimation(
# c(PredTask(Species ~ .,iris),
# PredTask(classes ~ .,Satellite,"sat"),
# PredTask(lettr ~ .,LetterRecognition,"letter")),
# workflowVariants(learner="svm",
# learner.pars=list(cost=1:4,gamma=c(0.1,0.01))),
# EstimationTask(metrics=c("err","acc"),method=CV()))
#
#
# ## checking the top performers
# topPerformers(res)
#
# ## now let us assume that we will choose "svm.v2" as our baseline
# ## carry out the paired comparisons
# pres <- pairedComparisons(res,"svm.v2")
#
# ## obtaining a CD diagram comparing all workflows against
# ## the baseline (defined in the previous call to pairedComparisons)
# CDdiagram.BD(pres,metric="err")
#
# ## End(Not run)
Run the code above in your browser using DataLab