Learn R Programming

⚠️There's a newer version (1.1.3) of this package.Take me there.

permuco

This package provides functions to compute permutation tests in linear models with nuisances variables. The package has several goals :

  • Providing to users the most recent methods to handle nuisance variables for permutation tests in the linear models.
  • Giving to users tools to compute most common tests in linear model (t test, ANOVA and repeated measure ANOVA).
  • Providing an extension for the multiple comparisons problems in linear models with a focus for EEG data.

The lmperm() function

This function is constructed as an extension of the the lm() function for permutation test. It produces t statistics with univariate and bivariate p-value by permutation.

The aovperm() function

This function is constructed as an extension of the the aov() function for permutation test. It produces marginal F statistics (type III) for factorial ANOVA and ANCOVA. Moreover, repeated measures ANOVA can be perform using the same notations used in an aov() formula with +Error(id/within) to specify the random effects.

The clusterlm() function

This function compute cluster-mass statistics for multiple comparisons. It is designed for ERP analysis of unichannel EEG data. The left part of formula object must be a matrix or dataframe which columns represents multiple responses tested on the same experimental design (specified by right part of the formula). This function provides several methods to handle nuisance variables, a F or t statistics, an extension for repeated measure anova and several methods for the multiple comparisons lit the threshold-free cluster enhancement.

Contact

If you need help to use the package or want to report errors, contact Jaromil Frossard at jaromil.frossard@unige.ch.

References

For permutation tests with nuisance variables :

  • Kherad-Pajouh, S., & Renaud, O. (2010). An exact permutation method for testing any effect in balanced and unbalanced fixed effect ANOVA. Computational Statistics & Data Analysis, 54(7), 1881-1893.

  • Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., & Nichols, T. E. (2014). Permutation inference for the general linear model. Neuroimage, 92, 381-397.

For permutation test in repeated measures ANOVA :

  • Kherad-Pajouh, S., & Renaud, O. (2015). A general permutation approach for analyzing repeated measures ANOVA and mixed-model designs. Statistical Papers, 56(4), 947-967.

For cluster-mass statistics for the muliple comparison problems :

  • Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG-and MEG-data. Journal of neuroscience methods, 164(1), 177-190.

For the threshold-free cluster-enhancement method :

  • Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage, 44(1), 83-98.

Academic works using permuco

  • Allen, S. L., Bonduriansky, R., & Chenoweth, S. F. (2018). Genetic constraints on microevolutionary divergence of sex-biased gene expression. Phil. Trans. R. Soc. B, 373(1757), 20170427.

  • Almodóvar-Rivera, I., & Maitra, R. (2019). FAST adaptive smoothing and thresholding for improved activation detection in low-signal fMRI. IEEE transactions on medical imaging.

  • Bürki, A., Frossard, J., & Renaud, O. (2018). Accounting for stimulus and participant effects in event-related potential analyses to increase the replicability of studies. Journal of neuroscience methods, 309, 218-227.

  • Christie, B. R., Trivino‐Paredes, J., Pinar, C., Neale, K. J., Meconi, A., Reid, H., & Hutton, C. P. (2019). A Rapid Neurological Assessment Protocol for Repeated Mild Traumatic Brain Injury in Awake Rats. Current protocols in neuroscience, 89(1), e80.

  • Destro, G. F. G., de Fernandes, V., de Andrade, A. F. A., De Marco, P., & Terribile, L. C. (2019). Back home? Uncertainties for returning seized animals to the source‐areas under climate change. Global change biology.

  • Drexl, K., Kunze, A. E., & Werner, G. G. (2019). The German version of the Fear of Sleep Inventory-Short Form: A psychometric study. European Journal of Trauma & Dissociation.

  • Godfrey, M., Hepburn, S., Fidler, D. J., Tapera, T., Zhang, F., Rosenberg, C. R., & Lee, N. R. (2019). Autism spectrum disorder (ASD) symptom profiles of children with comorbid Down syndrome (DS) and ASD: A comparison with children with DS-only and ASD-only. Research in Developmental Disabilities, 89, 83-93.

  • Hartmann, M., Sommer, N. R., Diana, L., Müri, R. M., & Eberhard-Moscicka, A. K. (2018). Further to the right: Viewing distance modulates attentional asymmetries (‘pseudoneglect’) during visual exploration. Brain and Cognition.

  • Kern, E. M. A., & Langerhans, R. B. (2019). Urbanization Alters Swimming Performance of a Stream Fish. Front. Ecol. Evol. 6: 229. doi: 10.3389/fevo.

  • Musariri, T., Pegg, N., Muvengwi, J., & Muzama, F. (2018). Differing patterns of plant spinescence affect blue duiker (Bovidae: Philantomba monticola) browsing behavior and intake rates. Ecology and Evolution.

  • Podofillini, S., Cecere, J. G., Griggio, M., Corti, M., Capua, E. L. D., Parolini, M., ... & Rubolini, D. (2019). Benefits of extra food to reproduction depend on maternal condition. Oikos.

  • Soler, J., Arias, B., Moya, J., Ibáñez, M. I., Ortet, G., Fañanás, L., & Fatjó-Vilas, M. (2019). The interaction between the ZNF804A gene and cannabis use on the risk of psychosis in a non-clinical sample. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 89, 174-180.

  • Swanson, K., Goldbach, H. C., & Laubach, M. (2019). The rat medial frontal cortex controls pace, but not breakpoint, in a progressive ratio licking task. Behavioral neuroscience, 133(4), 385.

Copy Link

Version

Install

install.packages('permuco')

Monthly Downloads

557

Version

1.1.0

License

GPL (>= 2)

Maintainer

Frossard Jaromil

Last Published

December 19th, 2019

Functions in permuco (1.1.0)

summary.clusterlm

Summarize of a clusterlm object.
plot.clusterlm

Plot cluster or parameters.
print.clusterlm

Print clusterlm object.
plot.lmperm

Plot method for class "lmperm".
jpah2016

Dataset of a control study in psychology.
emergencycost

Dataset of cost of emergency patients.
compute_clustermass

Clustermass test correction
compute_minP

The min-P correction
clusterlm

Cluster test for longitudinal data
Pmat

Create a set of permutations.
as.Pmat

Method to convert into Pmat object.
compute_troendle

The Troendle's correction
attentionshifting_signal

Dataset containing the event-related potential of the electrod O1 of a control experiment.
attentionshifting_design

Datatset of the design for the data attentionshifting_signal
compute_tfce

Threshold-Free Cluster-Enhancement correction
lmperm

Permutation tests for regression parameters
aovperm

P-values based on permutation tests for ANOVA and repeated measures ANOVA designs.