Learn R Programming

pfocal (version 1.0.0)

gaussian_kernel_confidence: Compute a Gaussian kernel

Description

Functions to compute a Gaussian kernel.

Usage

gaussian_kernel_confidence(
  vertical_r0 = 0.05,
  vertical_sd = 1,
  horizontal_r0 = vertical_r0,
  horizontal_sd = vertical_sd,
  tail_included = TRUE
)

gaussian_kernel_radius( vertical_radius, vertical_sd = 1, horizontal_radius = vertical_radius, horizontal_sd = vertical_sd, tail_included = TRUE )

Arguments

vertical_r0

[numeric] The kernel's r0 (exponential) in the vertical dimension.

vertical_sd

[numeric] The kernel's standard deviation in the vertical dimension.

horizontal_r0

[numeric] The kernel's r0 (exponential) in the horizontal dimension.

horizontal_sd

[numeric] The kernel's standard deviation in the horizontal dimension.

tail_included

[logical] Whether or not to include the kernel tail.

vertical_radius

[numeric] The kernel's radius in the vertical dimension.

horizontal_radius

[numeric] The kernel's radius in the horizontal dimension.

Value

A matrix corresponding to the kernel.

Examples

Run this code
# NOT RUN {
gaussian_kernel_confidence(vertical_r0 = 0.4, vertical_sd = 1, 
                           horizontal_r0 = 0.5, horizontal_sd = 2)
gaussian_kernel_confidence(vertical_r0 = 0.4, vertical_sd = 1, 
                           horizontal_r0 = 0.5, horizontal_sd = 2)

# }

Run the code above in your browser using DataLab