# Fixed parameter distribution simulation ----
## Parameters ----
h = 1; z = .5
## Sample only one value ----
single_value = rpg_scalar(h, z)
single_value
## Attempt distribution recovery ----
vector_of_pg_samples = rpg_vector(1e6, h, z)
head(vector_of_pg_samples)
length(vector_of_pg_samples)
## Obtain the empirical results ----
empirical_mean = mean(vector_of_pg_samples)
empirical_var = var(vector_of_pg_samples)
## Take the theoretical values ----
theoretical_mean = pg_mean(h, z)
theoretical_var = pg_var(h, z)
## Form a comparison table ----
# empirically sampled vs. theoretical values
rbind(c(empirical_mean, theoretical_mean),
c(empirical_var, theoretical_var))
# Varying distribution parameters ----
## Generate varying parameters ----
u_h = 20:100
u_z = 0.5*u_h
## Sample from varying parameters ----
x = rpg_hybrid(u_h, u_z)
Run the code above in your browser using DataLab