Learn R Programming

pgam (version 0.4.17)

pgam.likelihood: Likelihood function to be maximized

Description

This is the log-likelihood function that is passed to optim for likelihood maximization.

Usage

pgam.likelihood(par, y, x, offset, fperiod, env = parent.frame())

Value

List containing log-likelihood value, optimum linear predictor and the gamma parameters vectors.

Arguments

par

vector of parameters to be optimized

y

observed time series which is the response variable of the model

x

observed explanatory variables for parametric fit

offset

model offset. Just like in GLM

fperiod

vector of seasonal factors to be passed to pgam.par2psi

env

the caller environment for log-likelihood value to be stored

Author

Washington Leite Junger wjunger@ims.uerj.br and Antonio Ponce de Leon ponce@ims.uerj.br

Details

Log-likelihood function of hyperparameters \(\omega\) and \(\beta\) is given by $$\log L\left(\omega,\beta\right)=\sum_{t=\tau+1}^{n}{\log \Gamma\left(a_{t|t-1}+y_{t}\right)-\log y_{t}!-\log \Gamma\left(a_{t|t-1}\right)+a_{t|t-1}\log b_{t|t-1}-\left(a_{t|t-1}+y_{t}\right)\log \left(1+b_{t|t-1}\right)}$$ where \(a_{t|t-1}\) and \(b_{t|t-1}\) are estimated as it is shown in pgam.filter.

References

Harvey, A. C., Fernandes, C. (1989) Time series models for count data or qualitative observations. Journal of Business and Economic Statistics, 7(4):407--417

Harvey, A. C. (1990) Forecasting, structural time series models and the Kalman Filter. Cambridge, New York

Junger, W. L. (2004) Semiparametric Poisson-Gamma models: a roughness penalty approach. MSc Dissertation. Rio de Janeiro, PUC-Rio, Department of Electrical Engineering.

See Also

pgam, pgam.filter, pgam.fit