Prediction and forecasting of the fitted model.
# S3 method for pgam
predict(object, forecast = FALSE, k = 1, x = NULL, ...)
List with those described in Details
object of class pgam
holding the fitted model
if TRUE
the function tries to forecast
steps for forecasting
covariate values for forecasting if the model has covariates. Must have the \(k\) rows and \(p\) columns
further arguments passed to method
Washington Leite Junger wjunger@ims.uerj.br and Antonio Ponce de Leon ponce@ims.uerj.br
It estimates predicted values, their variances, deviance components, generalized Pearson statistics components, local level, smoothed prediction and forecast.
Considering a Poisson process and a gamma priori, the predictive distribution of the model is negative binomial with parameters \(a_{t|t-1}\) and \(b_{t|t-1}\). So, the conditional mean and variance are given by $$E\left(y_{t}|Y_{t-1}\right)=a_{t|t-1}/b_{t|t-1}$$ and $$Var\left(y_{t}|Y_{t-1}\right)=a_{t|t-1}\left(1+b_{t|t-1}\right)/b_{t|t-1}^{2}$$
Deviance components are estimated as follow $$D\left(y;\hat\mu\right)=2\sum_{t=\tau+1}^{n}{a_{t|t-1}\log \left(\frac{a_{t|t-1}}{y_{t}b_{t|t-1}}\right)-\left(a_{t|t-1}+y_{t}\right)\log \frac{\left(y_{t}+a_{t|t-1}\right)}{\left(1+b_{t|t-1}\right)y_{t}}}$$
Generalized Pearson statistics has the form $$X^{2}=\sum_{t=\tau+1}^{n}\frac{\left(y_{t}b_{t|t-1}-a_{t|t-1}\right)^{2}} {a_{t|t-1}\left(1+b_{t|t-1}\right)}$$
Approximate scale parameter is given by the expression $$\hat\phi=frac{X^{2}}{edf}$$ where \(edf\) is the number o degrees of reedom of the fitted model.
Green, P. J., Silverman, B. W. (1994) Nonparametric Regression and Generalized Linear Models: a roughness penalty approach. Chapman and Hall, London
Harvey, A. C., Fernandes, C. (1989) Time series models for count data or qualitative observations. Journal of Business and Economic Statistics, 7(4):407--417
Junger, W. L. (2004) Semiparametric Poisson-Gamma models: a roughness penalty approach. MSc Dissertation. Rio de Janeiro, PUC-Rio, Department of Electrical Engineering.
Harvey, A. C. (1990) Forecasting, structural time series models and the Kalman Filter. Cambridge, New York
Hastie, T. J., Tibshirani, R. J.(1990) Generalized Additive Models. Chapman and Hall, London
McCullagh, P., Nelder, J. A. (1989). Generalized Linear Models. Chapman and Hall, 2nd edition, London
pgam
, residuals.pgam
library(pgam)
data(aihrio)
attach(aihrio)
form <- ITRESP5~f(WEEK)+HOLIDAYS+rain+PM+g(tmpmax,7)+g(wet,3)
m <- pgam(form,aihrio,omega=.8,beta=.01,maxit=1e2,eps=1e-4,optim.method="BFGS")
p <- predict(m)$yhat
plot(ITRESP5)
lines(p)
Run the code above in your browser using DataLab