Learn R Programming

pgnorm (version 2.0.1)

dpgnorm: A function to evaluate the \(p\)-generalized normal density

Description

The function evaluates the density \(f(x,p,mean,sigma)\) of the univariate \(p\)-generalized normal distribution according to $$f(x,p,mean,\sigma)=(\sigma_p/ \sigma) \, C_p \, \exp \left( - \left( \frac{\sigma_p}{\sigma } \right)^p \frac{\left| x-mean \right|^p}{p} \right) ,$$ where \(C_p=p^{1-1/p}/2/\Gamma(1/p)\) and \(\sigma_p^2=p^{2/p} \, \Gamma(3/p)/ \Gamma(1/p)\).

Usage

dpgnorm(y, p, mean, sigma)

Value

A real number.

Arguments

y

The real argument of the function.

p

A positive number expressing the form parameter of the distribution. The default is 2.

mean

A real number expressing the expectation of the distribution. The default is 0.

sigma

A positive number expressing the standard deviation of the distribution. The default is \(\sigma_p\).

Author

Steve Kalke

References

S. Kalke and W.-D. Richter (2013)."Simulation of the p-generalized Gaussian distribution." Journal of Statistical Computation and Simulation. Volume 83. Issue 4.

Examples

Run this code
y<-dpgnorm(0,3,1,2)

Run the code above in your browser using DataLab