
Last chance! 50% off unlimited learning
Sale ends in
pmlCluster(formula, fit, weight, p=1:5, part=NULL, nrep = 10,
control=pml.control(epsilon=1e-8, maxit=10, trace=1),...)
pml
.weight
is matrix of frequency of site patterns for all genes.pmlCluster
returns a list with elementsformula
object allows to specify which parameter get
optimized. The formula is generally of the form edge + bf + Q
~ rate + shape + ...
, on the left side are the parameters which
get optimized over all cluster, on the right the parameter which
are optimized specific to each cluster. The parameters available
are "nni", "bf", "Q", "inv", "shape", "edge", "rate"
.
Each parameter can be used only once in the formula.
There are also some restriction on the combinations how parameters
can get used. "rate"
is only available for the right side.
When "rate"
is specified on the left hand side "edge"
has to be specified (on either side), if "rate"
is specified on
the right hand side it follows directly that edge
is too.Lanfear, R., Calcott, B., Ho, S.Y.W. and Guindon, S. (2012) PartitionFinder: Combined Selection of Partitioning Schemes and Substitution Models for Phylogenetic Analyses. Molecular Biology and Evolution, 29(6), 1695-1701
pml
,pmlPart
,pmlMix
,SH.test
data(yeast)
dm <- dist.logDet(yeast)
tree <- NJ(dm)
fit=pml(tree,yeast)
fit = optim.pml(fit)
weight=xtabs(~ index+genes,attr(yeast, "index"))
set.seed(1)
sp <- pmlCluster(edge~rate, fit, weight, p=1:4)
sp
SH.test(sp)
Run the code above in your browser using DataLab