## Not run:
# X <- allSitePattern(5)
# tree <- read.tree(text = "((t1:0.3,t2:0.3):0.1,(t3:0.3,t4:0.3):0.1,t5:0.5);")
# fit <- pml(tree,X, k=4)
# weights <- 1000*exp(fit$site)
# attr(X, "weight") <- weights
# fit1 <- update(fit, data=X, k=1)
# fit2 <- update(fit, data=X)
#
# (fitMixture <- pmlMix(edge~rate, fit1 , m=4))
# (fit2 <- optim.pml(fit2, optGamma=TRUE))
#
#
# data(Laurasiatherian)
# dm <- dist.logDet(Laurasiatherian)
# tree <- NJ(dm)
# fit=pml(tree, Laurasiatherian)
# fit = optim.pml(fit)
#
# fit2 <- update(fit, k=4)
# fit2 <- optim.pml(fit2, optGamma=TRUE)
#
# fitMix = pmlMix(edge ~ rate, fit, m=4)
# fitMix
#
#
# #
# # simulation of mixture models
# #
# \dontrun{
# X <- allSitePattern(5)
# tree1 <- read.tree(text = "((t1:0.1,t2:0.5):0.1,(t3:0.1,t4:0.5):0.1,t5:0.5);")
# tree2 <- read.tree(text = "((t1:0.5,t2:0.1):0.1,(t3:0.5,t4:0.1):0.1,t5:0.5);")
# tree1 <- unroot(tree1)
# tree2 <- unroot(tree2)
# fit1 <- pml(tree1,X)
# fit2 <- pml(tree2,X)
#
# weights <- 2000*exp(fit1$site) + 1000*exp(fit2$site)
# attr(X, "weight") <- weights
#
# fit1 <- pml(tree1, X)
# fit2 <- optim.pml(fit1)
# logLik(fit2)
# AIC(fit2, k=log(3000))
#
# fitMixEdge = pmlMix( ~ edge, fit1, m=2)
# logLik(fitMixEdge)
# AIC(fitMixEdge, k=log(3000))
#
# fit.p <- pmlPen(fitMixEdge, .25)
# logLik(fit.p)
# AIC(fit.p, k=log(3000))
# }
# ## End(Not run)
Run the code above in your browser using DataLab