pmlMix

0th

Percentile

Phylogenetic mixture model

Phylogenetic mixture model.

Keywords
cluster
Usage
pmlMix(formula, fit, m = 2, omega = rep(1/m, m),
  control = pml.control(epsilon = 1e-08, maxit = 20, trace = 1), ...)
Arguments
formula

a formula object (see details).

fit

an object of class pml.

m

number of mixtures.

omega

mixing weights.

control

A list of parameters for controlling the fitting process.

Further arguments passed to or from other methods.

Details

The formula object allows to specify which parameter get optimized. The formula is generally of the form edge + bf + Q ~ rate + shape + …{}, on the left side are the parameters which get optimized over all mixtures, on the right the parameter which are optimized specific to each mixture. The parameters available are "nni", "bf", "Q", "inv", "shape", "edge", "rate". Each parameters can be used only once in the formula. "rate" and "nni" are only available for the right side of the formula. On the other hand parameters for invariable sites are only allowed on the left-hand side. The convergence of the algorithm is very slow and is likely that the algorithm can get stuck in local optima.

Value

pmlMix returns a list with elements

logLik

log-likelihood of the fit

omega

mixing weights.

fits

fits for the final mixtures.

See Also

pml,pmlPart,pmlCluster

Aliases
  • pmlMix
Examples
# NOT RUN {
# }
# NOT RUN {
X <- allSitePattern(5)
tree <- read.tree(text = "((t1:0.3,t2:0.3):0.1,(t3:0.3,t4:0.3):0.1,t5:0.5);")
fit <- pml(tree,X, k=4)
weights <- 1000*exp(fit$site)
attr(X, "weight") <- weights
fit1 <- update(fit, data=X, k=1)
fit2 <- update(fit, data=X)

(fitMixture <- pmlMix(edge~rate, fit1 , m=4))
(fit2 <- optim.pml(fit2, optGamma=TRUE))


data(Laurasiatherian)
dm <- dist.logDet(Laurasiatherian)
tree <- NJ(dm)
fit <- pml(tree, Laurasiatherian)
fit <- optim.pml(fit)

fit2 <- update(fit, k=4)
fit2 <- optim.pml(fit2, optGamma=TRUE)

fitMix <- pmlMix(edge ~ rate, fit, m=4)
fitMix


#
# simulation of mixture models
#
\dontrun{
X <- allSitePattern(5)
tree1 <- read.tree(text = "((t1:0.1,t2:0.5):0.1,(t3:0.1,t4:0.5):0.1,t5:0.5);")
tree2 <- read.tree(text = "((t1:0.5,t2:0.1):0.1,(t3:0.5,t4:0.1):0.1,t5:0.5);")
tree1 <- unroot(tree1)
tree2 <- unroot(tree2)
fit1 <- pml(tree1,X)
fit2 <- pml(tree2,X)

weights <- 2000*exp(fit1$site) + 1000*exp(fit2$site)
attr(X, "weight") <- weights

fit1 <- pml(tree1, X)
fit2 <- optim.pml(fit1)
logLik(fit2)
AIC(fit2, k=log(3000))

fitMixEdge <- pmlMix( ~ edge, fit1, m=2)
logLik(fitMixEdge)
AIC(fitMixEdge, k=log(3000))

fit.p <- pmlPen(fitMixEdge, .25)
logLik(fit.p)
AIC(fit.p, k=log(3000))
}
# }
# NOT RUN {
# }
Documentation reproduced from package phangorn, version 2.5.5, License: GPL (>= 2)

Community examples

Looks like there are no examples yet.