Learn R Programming

pharmr (version 0.96.0)

set_additive_error_model: set_additive_error_model

Description

Set an additive error model. Initial estimate for new sigma is :math:(min(DV)/2)².

The error function being applied depends on the data transformation. The table displays some examples.

+------------------------+----------------------------------------+ | Data transformation | Additive error | +========================+========================================+ | :math:y | :math:f + epsilon_1 | +------------------------+----------------------------------------+ | :math:log(y) | :math:log(f) + frac{epsilon_1}{f} | +------------------------+----------------------------------------+

Usage

set_additive_error_model(model, dv = NULL, data_trans = NULL, series_terms = 2)

Value

(Model) Pharmpy model object

Arguments

model

(Model) Set error model for this model

dv

(str or numeric (optional)) Name or DVID of dependent variable. NULL for the default (first or only)

data_trans

(str (optional)) A data transformation expression or NULL (default) to use the transformation specified by the model. Series expansion will be used for approximation.

series_terms

(numeric) Number of terms to use for the series expansion approximation for data transformation.

See Also

set_proportional_error_model : Proportional error model

set_combined_error_model : Combined error model

Examples

Run this code
if (FALSE) {
model <- load_example_model("pheno")
model$statements$find_assignment("Y")
model <- set_additive_error_model(model)
model$statements$find_assignment("Y")
model <- load_example_model("pheno")
model$statements$find_assignment("Y")
model <- set_additive_error_model(model, data_trans="log(Y)")
model$statements$find_assignment("Y")
}

Run the code above in your browser using DataLab