## Not run:
# #=====================================================================
# # Logistic regression with variable time-interval between observations
# #=====================================================================
#
# #= Library
# library(phcfM)
#
# #== Generating data
#
# # Random seed
# set.seed(1234)
#
# # Constants
# nobs <- 3000
#
# # Covariates
# X1 <- runif(n=nobs,min=-10,max=10)
# X2 <- runif(n=nobs,min=-10,max=10)
# X <- cbind(rep(1,nobs),X1,X2)
# I <- runif(n=nobs,min=1,max=5) # Time-interval
#
# # Target beta parameters
# beta.target <- matrix(c(0.3,0.2,0.1),ncol=1)
#
# # Response
# theta <- vector()
# theta_prim <- vector()
# Y <- vector()
# for (n in 1:nobs) {
# theta[n] <- inv.logit(X[n,]%*%beta.target)
# theta_prim[n] <- 1-(1-theta[n])^I[n]
# Y[n] <- rbinom(n=1,size=1,prob=theta_prim[n])
# }
#
# # Data-set
# Data <- as.data.frame(cbind(Y,I,theta_prim,theta,X1,X2))
# plot(Data$X1,Data$theta)
# plot(Data$X2,Data$theta)
#
# #== Call to deforestation()
# model <- deforestation(formula=Y~X1+X2, interval=Data$I, data=Data, burnin=1000, mcmc=1000,
# thin=1, verbose=1, seed=NA, tune=1, beta.start=NA, mubeta=0,
# Vbeta=1.0E6)
#
# #== MCMC analysis
#
# # Graphics
# plot(model$mcmc)
#
# # Parameter estimates
# str(model)
# summary(model$mcmc)
# model$deviance
# model$tune
#
# ## We obtain good parameter estimates
# ##
# ## Mean SD Naive SE Time-series SE
# ## beta.(Intercept) 0.3362 0.054534 0.0017245 0.006589
# ## beta.X1 0.2027 0.009345 0.0002955 0.001154
# ## beta.X2 0.1037 0.007269 0.0002299 0.000838
#
# #== GLM resolution if time-interval is not taken into account
#
# model.glm <- glm(Y~X1+X2,data=Data,family="binomial")
# summary(model.glm)
#
# ## In this case, the parameter estimates are biased
# ## Estimate Std. Error z value Pr(>|z|)
# ## (Intercept) 2.000761 0.072069 27.76 <2e-16 ***
# ## X1 0.247514 0.012060 20.52 <2e-16 ***
# ## X2 0.123137 0.009803 12.56 <2e-16 ***
# ## End(Not run)
Run the code above in your browser using DataLab