powered by
logit(x, min = 0, max = 1) inv.logit(x, min = 0, max = 1)
The generalized logit function takes values on [min, max] and transforms them to span [-Inf,Inf] it is defined as:
$$y = log(\frac{p}{(1-p)})$$
where $$p=\frac{(x-min)}{(max-min)}$$
The generized inverse logit function provides the inverse transformation: $$x = p' (max-min) + min$$
where
$$p'=\frac{exp(y)}{(1+exp(y))}$$
## Not run: # x <- seq(0,10, by=0.25) # xt <- logit(x, min=0, max=10) # cbind(x,xt) # # y <- inv.logit(xt, min=0, max=10) # cbind(x,xt,y) # ## End(Not run)
Run the code above in your browser using DataLab