pheno.ddm: Dense design matrix for phenological data
Description
Creation of dense two-way classification design matrix
for usage in robust parameter estimation with rq.fit.sfn (package nprq).
The sum of the second factor is constrained to be zero. No general mean.
Usage
pheno.ddm(D)
Arguments
D
Data frame with three columns: (observations, factor 1, factor 2).
Value
ddmDense roworder matrix, matrix.csr format (see matrix.csr in package SparseM)
DInput data frame D sorted first by f2 then by f1.
Details
In phenological applications observations should be the julian day
of observation of a certain phase, factor 1 should be the observation year
and factor 2 should be a station-id.
Usually this is much easier created by:
y <- factor(f1)
s <- factor(f2)
ddm <- as.matrix.csr(model.matrix(~ y + s -1, contrasts=list(s=("contr.sum")))).
However, this procedure can be quite memory demanding and might exceed storage
capacity for large problems.
This procedure here is much less memory comsuming.
data(DWD)
ddm1 <- pheno.ddm(DWD)
attach(DWD)
y <- factor(DWD[[2]])
s <- factor(DWD[[3]])
ddm2 <- as.matrix.csr(model.matrix(~ y + s -1, contrasts=list(s=("contr.sum"))))
identical(ddm1$ddm,ddm2)