heatmapPhenoTest(x, signatures, vars2test, probes2genes = FALSE,
filterVar, filteralpha = 0.05, distCol = "pearson", nClust = 2, distRow
= "cor", p.adjust.method = "none", simulate.p.value = FALSE, B = 10^5,
linkage = "average", equalize = FALSE, center = TRUE, col, survCol,
heat.kaplan="both", ...)
pData(x)
.featureNames(x)
). A separate heatmap will be produced
for each element in the list.names(pData(x))
.TRUE
a single probe is selected for
each gene. nsFilter
is used to select the probe with highest
inter-quartile range.filterVar
will be displayed in the
heatmap. Note that this option will not affec the sample clustering,
as this is obtained using both significant and non-significant genes.filterVar
.dist
. Pearson and Spearman correlations are also
allowed. Write 'spearman' or 'pearson' to use them.distancematrix
.p.adjust
.chisq.test
for details).chisq.test
).heatmap_plus
.simulate.p.value
is set to TRUE); for var2test\$survival a Cox proportional hazards likelihood-ratio test.
#load data
data(eset)
eset
#construct vars2test
survival <- matrix(c("Relapse","Months2Relapse"),ncol=2,byrow=TRUE)
colnames(survival) <- c('event','time')
vars2test <- list(survival=survival)
vars2test
#construct a signature
sign <- sample(featureNames(eset))[1:20]
#make plot
heatmapPhenoTest(eset,sign,vars2test=vars2test,heat.kaplan='heat')
heatmapPhenoTest(eset,sign,vars2test=vars2test,heat.kaplan='kaplan')
Run the code above in your browser using DataLab