Apply a time-series model, double logistic function , to the time-series trait data. This function was originally developed for the time-series data of rice CIg data. Fitting the time-series model is done by the "two-step procedure". For more information, see Taniguchi et al. (under review).
doubleLogis(
dat,
x,
y,
returnModels = FALSE,
start = c(r2 = 0.05, r3 = 0.05, d2 = 40, d3 = 100),
upper = c(r2 = 1, r3 = 1, d2 = 200, d3 = 200),
lower = c(r2 = 0, r3 = 0, d2 = 0, d3 = 0)
)doubleLogis function returns the vector of estimated parameter values. If returnModels = TRUE, this function also returns the nls regression object.
data.frame including date and trait (e.g. canopy height).
Column name (character) for the date after sowing or planting.
Column name (character) for the trait.
Logical value whether to return the time-series model object. Default is F.
Start values to estimate 'r2', 'r3', 'd2' and 'd3'. Default is 'c(r2 = 0.05, r3 = 0.05, d2 = 40, d3 = 100)'.
Upper bounds to estimate 'r2', 'r3', 'd2' and 'd3'. Default is 'c(r2 = 1, r3 = 1, d2 = 200, d3 = 200)'.
Lower bounds to estimate 'r2', 'r3', 'd2' and 'd3'. Default is 'c(r2 = 0, r3 = 0, d2 = 0, d3 = 0)'.
S. Taniguchi et al. (2025) Phenology analysis for trait prediction using UAVs in a MAGIC rice population with different transplanting protocols. Frontiers in Artificial Intelligence, 7, 1477637.
library(phenolocrop)
riceCIg_eg |>
doubleLogis("x", "CIg")
Run the code above in your browser using DataLab