library("phenology")
# Read a file with data
# Gratiot<-read.delim("http://max2.ese.u-psud.fr/epc/conservation/BI/Complete.txt", , header=FALSE)
data(Gratiot)
# Generate a formatted list nammed data_Gratiot
data_Gratiot<-add_format(origin=NULL, add=Gratiot, name="Complete", reference=as.Date("2001-01-01"), format="%d/%m/%Y")
# Generate initial points for the optimisation
parg<-par_init(data_Gratiot, parametersfixed=NULL)
# Run the optimisation
# result_Gratiot<-fit_phenology(data=data_Gratiot, parametersfit=parg, parametersfixed=NULL, trace=1)
data(result_Gratiot)
# Extract the fitted parameters
parg1<-extract_result(result_Gratiot)
# Add constant Alpha and Tau values [day d amplitude=(Alpha+Nd*Beta)^Tau with Nd being the number of counts for day d]
pfixed<-c(parg1, Alpha=0, Tau=1)
pfixed<-pfixed[-which(names(pfixed)=="Theta")]
# The only fitted parameter will be Beta
parg2<-c(Beta=0.5, parg1["Theta"])
# Generate a likelihood map [default Phi=seq(from=0.1, to=20, length.out=100) but it is very long]
# Take care, it takes 20 hours ! The data map_Gratiot has the result
# map_Gratiot<-map_phenology(data=data_Gratiot, Phi=seq(from=0.1, to=20, length.out=100), parametersfit=parg2, parametersfixed=pfixed)
data(map_Gratiot)
# Plot the map
plot_map(map=map_Gratiot, pdf=FALSE, col=heat.colors(128))
Run the code above in your browser using DataLab