Learn R Programming

phenology (version 4.0.4)

plot.mcmcComposite: Plot the result of a MCMC search

Description

Plot the result of a MCMC search. The parameters to use can be called by: parameters="all" parameters=1:4 parameters=c("PAR1", "PAR2", "PAR5") parameters=c(TRUE, TRUE, FALSE, TRUE)

Usage

## S3 method for class 'mcmcComposite':
plot(x, ..., chain = 1, parameters = 1,
  scale.prior = FALSE, legend = TRUE)

Arguments

x
A mcmcComposite object obtained after phenology_fonctionMCMC()
...
Graphical parameters to be send to hist()
chain
The chain to use
parameters
Name of parameters or their number (see description)
scale.prior
If TRUE, the prior is scaled at the same size as posterior
legend
If FALSE, the legend is not shown

Value

  • None

Details

plot.mcmcComposite plots the result of a MCMC search

Examples

Run this code
library(phenology)
data(Gratiot)
# Generate a formatted list named data_Gratiot
data_Gratiot<-add_phenology(Gratiot, name="Complete",
    reference=as.Date("2001-01-01"), format="%d/%m/%Y")
# Generate initial points for the optimisation
parg<-par_init(data_Gratiot, parametersfixed=NULL)
# Run the optimisation
result_Gratiot<-fit_phenology(data=data_Gratiot,
		parametersfit=parg, parametersfixed=NULL, trace=1)
# Generate set of priors for Bayesian analysis
pmcmc <- phenology_MHmcmc_p(result_Gratiot, accept = TRUE)
result_Gratiot_mcmc <- phenology_MHmcmc(result = result_Gratiot, n.iter = 10000,
parametersMCMC = pmcmc, n.chains = 1, n.adapt = 0, thin = 1, trace = FALSE)
# Get standard error of parameters
summary(result_Gratiot_mcmc)
# Make diagnostics of the mcmc results using coda package
mcmc <- as.mcmc(result_Gratiot_mcmc)
require(coda)
heidel.diag(mcmc)
raftery.diag(mcmc)
autocorr.diag(mcmc)
acf(mcmc[[1]][,"LengthB"], lag.max=200, bty="n", las=1)
acf(mcmc[[1]][,"Max_Gratiot"], lag.max=50, bty="n", las=1)
batchSE(mcmc, batchSize=100)
# The batch standard error procedure is usually thought to
# be not as accurate as the time series methods used in summary
summary(mcmc)$statistics[,"Time-series SE"]
plot(result_Gratiot_mcmc, parameters=3, las=1, xlim=c(-10, 300))

Run the code above in your browser using DataLab