Learn R Programming

phenology (version 4.2.4)

plot.fitRMU: Plot the synthesis of RMU fit.

Description

The function plot.fitRMU plots the results of fitRMU(). The parameter at.legend can be bottomright, bottomleft, topleft or topright or a vector with c(x= , y= ).

Usage

## S3 method for class 'fitRMU':
plot(x, ..., what = "proportions",
  at.legend = "bottomright", legend = NULL)

Arguments

x
A result file generated by fitRMU
...
Parameters used by plot
what
Can be proportions, numbers or total
at.legend
Position of the legend
legend
Text to show as legend. If FALSE, does not show legend. If NULL, it will use the column names for mean from RMU.names.

Value

  • Return Nothing

Details

plot.fitRMU plots the results of a fit RMU.

See Also

Other Fill gaps in RMU: fitRMU_MHmcmc_p; fitRMU_MHmcmc; fitRMU; logLik.fitRMU

Examples

Run this code
library("phenology")
RMU.names.AtlanticW <- data.frame(mean=c("Yalimapo.French.Guiana",
                                         "Galibi.Suriname",
                                         "Irakumpapy.French.Guiana"),
                                 se=c("se_Yalimapo.French.Guiana",
                                      "se_Galibi.Suriname",
                                      "se_Irakumpapy.French.Guiana"))
data.AtlanticW <- data.frame(Year=c(1990:2000),
      Yalimapo.French.Guiana=c(2076, 2765, 2890, 2678, NA,
                               6542, 5678, 1243, NA, 1566, 1566),
      se_Yalimapo.French.Guiana=c(123.2, 27.7, 62.5, 126, NA,
                                 230, 129, 167, NA, 145, 20),
      Galibi.Suriname=c(276, 275, 290, NA, 267,
                       542, 678, NA, 243, 156, 123),
      se_Galibi.Suriname=c(22.3, 34.2, 23.2, NA, 23.2,
                           4.3, 2.3, NA, 10.3, 10.1, 8.9),
      Irakumpapy.French.Guiana=c(1076, 1765, 1390, 1678, NA,
                               3542, 2678, 243, NA, 566, 566),
      se_Irakumpapy.French.Guiana=c(23.2, 29.7, 22.5, 226, NA,
                                 130, 29, 67, NA, 15, 20))

cst <- fitRMU(RMU.data=data.AtlanticW, RMU.names=RMU.names.AtlanticW,
               colname.year="Year", model.trend="Constant",
               model.SD="Zero")
expo <- fitRMU(RMU.data=data.AtlanticW, RMU.names=RMU.names.AtlanticW,
               colname.year="Year", model.trend="Exponential",
               model.SD="Zero")
YS <- fitRMU(RMU.data=data.AtlanticW, RMU.names=RMU.names.AtlanticW,
             colname.year="Year", model.trend="Year-specific",
             model.SD="Zero")
YS1 <- fitRMU(RMU.data=data.AtlanticW, RMU.names=RMU.names.AtlanticW,
             colname.year="Year", model.trend="Year-specific",
             model.SD="Zero", model.rookeries="First-order")
YS1_cst <- fitRMU(RMU.data=data.AtlanticW, RMU.names=RMU.names.AtlanticW,
             colname.year="Year", model.trend="Year-specific",
             model.SD="Constant", model.rookeries="First-order",
             parameters=YS1$par)
YS2 <- fitRMU(RMU.data=data.AtlanticW, RMU.names=RMU.names.AtlanticW,
             colname.year="Year", model.trend="Year-specific",
             model.SD="Zero", model.rookeries="Second-order",
             parameters=YS1$par)
YS2_cst <- fitRMU(RMU.data=data.AtlanticW, RMU.names=RMU.names.AtlanticW,
             colname.year="Year", model.trend="Year-specific",
             model.SD="Constant", model.rookeries="Second-order",
             parameters=YS1_cst$par)

compare_AIC(Constant=cst, Exponential=expo,
YearSpecific=YS)

compare_AIC(YearSpecific_ProportionsFirstOrder_Zero=YS1,
YearSpecific_ProportionsFirstOrder_Constant=YS1_cst)

compare_AIC(YearSpecific_ProportionsConstant=YS,
           YearSpecific_ProportionsFirstOrder=YS1,
           YearSpecific_ProportionsSecondOrder=YS2)

compare_AIC(YearSpecific_ProportionsFirstOrder=YS1_cst,
           YearSpecific_ProportionsSecondOrder=YS2_cst)

barplot_errbar(YS1_cst$proportions[1, ], y.plus = YS1_cst$proportions.CI.0.95[1, ],
y.minus = YS1_cst$proportions.CI.0.05[1, ], las=1, ylim=c(0, 0.7),
main="Proportion of the different rookeries in the region")

plot(cst, main="Use of different beaches along the time", what="total")
plot(expo, main="Use of different beaches along the time", what="total")
plot(YS2_cst, main="Use of different beaches along the time", what="total")

plot(YS1, main="Use of different beaches along the time")
plot(YS1_cst, main="Use of different beaches along the time")
plot(YS1_cst, main="Use of different beaches along the time", what="numbers")

parpre <- par(mar=c(4, 4, 2, 5)+0.4)
par(xpd=TRUE)
plot(YS, main="Use of different beaches along the time",
at.legend=c(x=2000, y=0.4), legend=c("Yalimapo", "Galibi", "Irakumpapy"))
par(mar=parpre)

Run the code above in your browser using DataLab