library('data.table')
library('survival')
# map ICD codes to phecodes
phecodeOccurrences = getPhecodeOccurrences(icdSample)
# calculate weights using the prevalence method
weightsPrev = getWeights(demoSample, phecodeOccurrences)
# calculate weights using the prevalence method
# (assign negative weights to those with zero phecode occurrence)
weightsPrevNeg = getWeights(
demoSample, phecodeOccurrences, negativeWeights = TRUE)
# calculate weights using the logistic method
weightsLogistic = getWeights(
demoSample, phecodeOccurrences, method = 'logistic', methodFormula = ~ sex)
# calculate weights using the loglinear method
phecodeOccurrences2 = phecodeOccurrences[, .(
num_occurrences = uniqueN(entry_date)), by = .(person_id, phecode)]
weightsLoglinear = getWeights(
demoSample, phecodeOccurrences2, method = 'loglinear', methodFormula = ~ sex)
# calculate weights using the cox method
phecodeOccurrences3 = phecodeOccurrences[, .(
first_occurrence_date = min(entry_date)) , by = .(person_id, phecode)]
phecodeOccurrences3 = merge(
phecodeOccurrences3, demoSample[, .(person_id, dob)], by = 'person_id')
phecodeOccurrences3[,
occurrence_age := as.numeric((first_occurrence_date - dob)/365.25)]
phecodeOccurrences3[, `:=`(first_occurrence_date = NULL, dob = NULL)]
demoSample3 = demoSample[, .(
person_id, sex,
first_age = as.numeric((first_visit_date - dob)/365.25),
last_age = as.numeric((last_visit_date - dob)/365.25))]
weightsCox = getWeights(
demoSample3, phecodeOccurrences3, method = 'cox', methodFormula = ~ sex)
# calculate weights using pre-calculated weights based on data from
# Vanderbilt University Medical Center
weightsPreCalc = getWeights(
demoSample, phecodeOccurrences, method = 'prevalence_precalc')
Run the code above in your browser using DataLab