Equations following Buckley and Diaz-Espejo (2015):
Rubisco-limited assimilation rate:
$$W_\mathrm{carbox} = V_\mathrm{c,max} C_\mathrm{chl} / (C_\mathrm{chl} + K_\mathrm{m})$$
where:
$$K_\mathrm{m} = K_\mathrm{C} (1 + O / K_\mathrm{O})$$
RuBP regeneration-limited assimilation rate:
$$W_\mathrm{regen} = J C_\mathrm{chl} / (4 C_\mathrm{chl} + 8 \Gamma*)$$
where \(J\) is a function of PPFD, obtained by solving the equation:
$$0 = \theta_J J ^ 2 - J (J_\mathrm{max} + \phi_J PPFD) + J_\mathrm{max} \phi_J PPFD$$
TPU-limited assimilation rate:
$$W_\mathrm{tpu} = 3 V_\mathrm{tpu} C_\mathrm{chl} / (C_\mathrm{chl} - \Gamma*)$$
Symbol |
R |
Description |
Units |
Default |
\(C_\mathrm{chl}\) |
C_chl |
chloroplastic CO2 concentration |
Pa |
input |
\(\Gamma*\) |
gamma_star |
chloroplastic CO2 compensation point (T_leaf) |
Pa |
calculated |
\(J_\mathrm{max}\) |
J_max |
potential electron transport (T_leaf) |
\(\mu\)mol CO2 / (m\(^2\) s) |
calculated |
\(K_\mathrm{C}\) |
K_C |
Michaelis constant for carboxylation (T_leaf) |
\(\mu\)mol / mol |
calculated |
\(K_\mathrm{O}\) |
K_O |
Michaelis constant for oxygenation (T_leaf) |
\(\mu\)mol / mol |
calculated |
\(O\) |
O |
atmospheric O2 concentration |
kPa |
21.27565 |
\(\phi_J\) |
phi_J |
initial slope of the response of J to PPFD |
none |
0.331 |
PPFD |
PPFD |
photosynthetic photon flux density |
umol quanta / (m^2 s) |
1500 |
\(R_\mathrm{d}\) |
R_d |
nonphotorespiratory CO2 release (T_leaf) |
\(\mu\)mol CO2 / (m\(^2\) s) |
calculated |
\(\theta_J\) |
theta_J |
curvature factor for light-response curve |
none |
0.825 |
\(V_\mathrm{c,max}\) |
V_cmax |
maximum rate of carboxylation (T_leaf) |
\(\mu\)mol CO2 / (m\(^2\) s) |
calculated |