Learn R Programming

photosynthesis (version 2.0.3)

make_parameters: Make lists of parameters for photosynthesis

Description

Make lists of parameters for photosynthesis

make_leafpar

make_enviropar

make_bakepar

make_constants

Usage

make_leafpar(replace = NULL, use_tealeaves)

make_enviropar(replace = NULL, use_tealeaves)

make_bakepar(replace = NULL)

make_constants(replace = NULL, use_tealeaves)

Value

make_leafpar: An object inheriting from class leaf_par

make_enviropar: An object inheriting from class enviro_par

make_bakepar: An object inheriting from class bake_par

make_constants: An object inheriting from class constants

Arguments

replace

A named list of parameters to replace defaults. If NULL, defaults will be used.

use_tealeaves

Logical. Should leaf energy balance be used to calculate leaf temperature (T_leaf)? If TRUE, tleaf calculates T_leaf. If FALSE, user-defined T_leaf is used. Additional parameters and constants are required, see make_parameters.

Details

Constants:

SymbolRDescriptionUnitsDefault
\(D_{c,0}\)D_c0diffusion coefficient for CO2 in air at 0 °Cm\(^2\) / s1.29e-5
\(D_{h,0}\)D_h0diffusion coefficient for heat in air at 0 °Cm\(^2\) / s1.90e-5
\(D_{m,0}\)D_m0diffusion coefficient for momentum in air at 0 °Cm\(^2\) / s1.33e-5
\(D_{w,0}\)D_w0diffusion coefficient for water vapor in air at 0 °Cm\(^2\) / s2.12e-5
\(\epsilon\)epsilonratio of water to air molar massesnone0.622
\(G\)Ggravitational accelerationm / s\(^2\)9.8
\(eT\)eTexponent for temperature dependence of diffusionnone1.75
\(R\)Rideal gas constantJ / (mol K)8.3144598
\(\sigma\)sStephan-Boltzmann constantW / (m\(^2\) K\(^4\))5.67e-08
\(Sh\)ShSherwood numbernonecalculated

Baking (i.e. temperature response) parameters:

SymbolRDescriptionUnitsDefault
\(D_\mathrm{s,gmc}\)Ds_gmcempirical temperature response parameterJ / (mol K)487.29
\(D_\mathrm{s,Jmax}\)Ds_Jmaxempirical temperature response parameterJ / (mol K)388.04
\(E_\mathrm{a,\Gamma *}\)Ea_gammastarempirical temperature response parameterJ / mol24459.97
\(E_\mathrm{a,gmc}\)Ea_gmcempirical temperature response parameterJ / mol68901.56
\(E_\mathrm{a,Jmax}\)Ea_Jmaxempirical temperature response parameterJ / mol56095.18
\(E_\mathrm{a,KC}\)Ea_KCempirical temperature response parameterJ / mol80989.78
\(E_\mathrm{a,KO}\)Ea_KOempirical temperature response parameterJ / mol23719.97
\(E_\mathrm{a,Rd}\)Ea_Rdempirical temperature response parameterJ / mol40446.75
\(E_\mathrm{a,Vcmax}\)Ea_Vcmaxempirical temperature response parameterJ / mol52245.78
\(E_\mathrm{d,gmc}\)Ed_gmcempirical temperature response parameterJ / mol148788.56
\(E_\mathrm{d,Jmax}\)Ed_Jmaxempirical temperature response parameterJ / mol121244.79

Environment parameters:

SymbolRDescriptionUnitsDefault
\(C_\mathrm{air}\)C_airatmospheric CO2 concentrationPa41
\(O\)Oatmospheric O2 concentrationkPa21.27565
\(P\)Patmospheric pressurekPa101.3246
PPFDPPFDphotosynthetic photon flux densityumol quanta / (m^2 s)1500
\(\mathrm{RH}\)RHrelative humiditynone0.50
\(u\)windwindspeedm / s2

Leaf parameters:

SymbolRDescriptionUnitsDefault
\(d\)leafsizeleaf characteristic dimensionm0.1
\(\Gamma*\)gamma_starchloroplastic CO2 compensation point (T_leaf)Pacalculated
\(\Gamma*_{25}\)gamma_star25chloroplastic CO2 compensation point (25 °C)Pa3.743
\(g_\mathrm{mc}\)g_mcmesophyll conductance to CO2 (T_leaf)\(\mu\)mol / (m\(^2\) s Pa)calculated
\(g_\mathrm{mc}\)g_mc25mesophyll conductance to CO2 (25 °C)\(\mu\)mol / (m\(^2\) s Pa)4
\(g_\mathrm{sc}\)g_scstomatal conductance to CO2\(\mu\)mol / (m\(^2\) s Pa)4
\(g_\mathrm{uc}\)g_uccuticular conductance to CO2\(\mu\)mol / (m\(^2\) s Pa)0.1
\(J_\mathrm{max25}\)J_max25potential electron transport (25 °C)\(\mu\)mol CO2 / (m\(^2\) s)200
\(J_\mathrm{max}\)J_maxpotential electron transport (T_leaf)\(\mu\)mol CO2 / (m\(^2\) s)calculated
\(k_\mathrm{mc}\)k_mcpartition of \(g_\mathrm{mc}\) to lower mesophyllnone1
\(k_\mathrm{sc}\)k_scpartition of \(g_\mathrm{sc}\) to lower surfacenone1
\(k_\mathrm{uc}\)k_ucpartition of \(g_\mathrm{uc}\) to lower surfacenone1
\(K_\mathrm{C25}\)K_C25Michaelis constant for carboxylation (25 °C)\(\mu\)mol / mol268.3
\(K_\mathrm{C}\)K_CMichaelis constant for carboxylation (T_leaf)\(\mu\)mol / molcalculated
\(K_\mathrm{O25}\)K_O25Michaelis constant for oxygenation (25 °C)\(\mu\)mol / mol165084.2
\(K_\mathrm{O}\)K_OMichaelis constant for oxygenation (T_leaf)\(\mu\)mol / molcalculated
\(\phi_J\)phi_Jinitial slope of the response of J to PPFDnone0.331
\(R_\mathrm{d25}\)R_d25nonphotorespiratory CO2 release (25 °C)\(\mu\)mol CO2 / (m\(^2\) s)2
\(R_\mathrm{d}\)R_dnonphotorespiratory CO2 release (T_leaf)\(\mu\)mol CO2 / (m\(^2\) s)calculated
\(\theta_J\)theta_Jcurvature factor for light-response curvenone0.825
\(T_\mathrm{leaf}\)T_leafleaf temperatureK298.15
\(V_\mathrm{c,max25}\)V_cmax25maximum rate of carboxylation (25 °C)\(\mu\)mol CO2 / (m\(^2\) s)150
\(V_\mathrm{c,max}\)V_cmaxmaximum rate of carboxylation (T_leaf)\(\mu\)mol CO2 / (m\(^2\) s)calculated
\(V_\mathrm{tpu25}\)V_tpu25rate of triose phosphate utilization (25 °C)\(\mu\)mol CO2 / (m\(^2\) s)200
\(V_\mathrm{tpu}\)V_tpurate of triose phosphate utilisation (T_leaf)\(\mu\)mol CO2 / (m\(^2\) s)calculated

If use_tealeaves = TRUE, additional parameters are:

Constants:

SymbolRDescriptionUnitsDefault
\(c_p\)c_pheat capacity of airJ / (g K)1.01
\(R_\mathrm{air}\)R_airspecific gas constant for dry airJ / (kg K)287.058

Environmental parameters:

SymbolRDescriptionUnitsDefault
\(E_q\)E_qenergy per mole quantakJ / mol220
\(f_\mathrm{PAR}\)f_parfraction of incoming shortwave radiation that is photosynthetically active radiation (PAR)none0.5
\(r\)rreflectance for shortwave irradiance (albedo)none0.2
\(T_\mathrm{air}\)T_airair temperatureK298.15

Leaf parameters:

SymbolRDescriptionUnitsDefault
\(\alpha_\mathrm{l}\)abs_labsorbtivity of longwave radiation (4 - 80 \(\mu\)m)none0.97
\(\alpha_\mathrm{s}\)abs_sabsorbtivity of shortwave radiation (0.3 - 4 \(\mu\)m)none0.50
\(g_\mathrm{sw}\)g_swstomatal conductance to H2O(\(\mu\)mol) / (m\(^2\) s Pa)converted from \(g_\mathrm{sc}\)
\(g_\mathrm{uw}\)g_uwcuticular conductance to H2O(\(\mu\)mol) / (m\(^2\) s Pa)converted from \(g_\mathrm{uc}\)
\(\mathrm{logit}(sr)\)logit_srstomatal ratio (logit transformed)noneconverted from \(k_\mathrm{sc}\)

References

Buckley TN and Diaz-Espejo A. 2015. Partitioning changes in photosynthetic rate into contributions from different variables. Plant, Cell & Environment 38: 1200-11.

Examples

Run this code
bake_par <- make_bakepar()
constants <- make_constants(use_tealeaves = FALSE)
enviro_par <- make_enviropar(use_tealeaves = FALSE)
leaf_par <- make_leafpar(use_tealeaves = FALSE)

leaf_par <- make_leafpar(
  replace = list(
    g_sc = set_units(3, "umol/m^2/s/Pa"),
    V_cmax25 = set_units(100, "umol/m^2/s")
  ), use_tealeaves = FALSE
)

Run the code above in your browser using DataLab