photosynthesis
Make lists of parameters for photosynthesis
make_leafpar
make_enviropar
make_bakepar
make_constants
make_leafpar(replace = NULL, use_tealeaves)make_enviropar(replace = NULL, use_tealeaves)
make_bakepar(replace = NULL)
make_constants(replace = NULL, use_tealeaves)
make_leafpar
: An object inheriting from class leaf_par
make_enviropar
: An object inheriting from class enviro_par
make_bakepar
: An object inheriting from class bake_par
make_constants
: An object inheriting from class constants
A named list of parameters to replace defaults.
If NULL
, defaults will be used.
Logical. Should leaf energy balance be used to calculate leaf temperature (T_leaf)? If TRUE, tleaf
calculates T_leaf. If FALSE, user-defined T_leaf is used. Additional parameters and constants are required, see make_parameters
.
Constants:
Symbol | R | Description | Units | Default |
\(D_{c,0}\) | D_c0 | diffusion coefficient for CO2 in air at 0 °C | m\(^2\) / s | 1.29e-5 |
\(D_{h,0}\) | D_h0 | diffusion coefficient for heat in air at 0 °C | m\(^2\) / s | 1.90e-5 |
\(D_{m,0}\) | D_m0 | diffusion coefficient for momentum in air at 0 °C | m\(^2\) / s | 1.33e-5 |
\(D_{w,0}\) | D_w0 | diffusion coefficient for water vapor in air at 0 °C | m\(^2\) / s | 2.12e-5 |
\(\epsilon\) | epsilon | ratio of water to air molar masses | none | 0.622 |
\(G\) | G | gravitational acceleration | m / s\(^2\) | 9.8 |
\(eT\) | eT | exponent for temperature dependence of diffusion | none | 1.75 |
\(R\) | R | ideal gas constant | J / (mol K) | 8.3144598 |
\(\sigma\) | s | Stephan-Boltzmann constant | W / (m\(^2\) K\(^4\)) | 5.67e-08 |
\(Sh\) | Sh | Sherwood number | none | calculated |
Baking (i.e. temperature response) parameters:
Symbol | R | Description | Units | Default |
\(D_\mathrm{s,gmc}\) | Ds_gmc | empirical temperature response parameter | J / (mol K) | 487.29 |
\(D_\mathrm{s,Jmax}\) | Ds_Jmax | empirical temperature response parameter | J / (mol K) | 388.04 |
\(E_\mathrm{a,\Gamma *}\) | Ea_gammastar | empirical temperature response parameter | J / mol | 24459.97 |
\(E_\mathrm{a,gmc}\) | Ea_gmc | empirical temperature response parameter | J / mol | 68901.56 |
\(E_\mathrm{a,Jmax}\) | Ea_Jmax | empirical temperature response parameter | J / mol | 56095.18 |
\(E_\mathrm{a,KC}\) | Ea_KC | empirical temperature response parameter | J / mol | 80989.78 |
\(E_\mathrm{a,KO}\) | Ea_KO | empirical temperature response parameter | J / mol | 23719.97 |
\(E_\mathrm{a,Rd}\) | Ea_Rd | empirical temperature response parameter | J / mol | 40446.75 |
\(E_\mathrm{a,Vcmax}\) | Ea_Vcmax | empirical temperature response parameter | J / mol | 52245.78 |
\(E_\mathrm{d,gmc}\) | Ed_gmc | empirical temperature response parameter | J / mol | 148788.56 |
\(E_\mathrm{d,Jmax}\) | Ed_Jmax | empirical temperature response parameter | J / mol | 121244.79 |
Environment parameters:
Symbol | R | Description | Units | Default |
\(C_\mathrm{air}\) | C_air | atmospheric CO2 concentration | Pa | 41 |
\(O\) | O | atmospheric O2 concentration | kPa | 21.27565 |
\(P\) | P | atmospheric pressure | kPa | 101.3246 |
PPFD | PPFD | photosynthetic photon flux density | umol quanta / (m^2 s) | 1500 |
\(\mathrm{RH}\) | RH | relative humidity | none | 0.50 |
\(u\) | wind | windspeed | m / s | 2 |
Leaf parameters:
Symbol | R | Description | Units | Default |
\(d\) | leafsize | leaf characteristic dimension | m | 0.1 |
\(\Gamma*\) | gamma_star | chloroplastic CO2 compensation point (T_leaf) | Pa | calculated |
\(\Gamma*_{25}\) | gamma_star25 | chloroplastic CO2 compensation point (25 °C) | Pa | 3.743 |
\(g_\mathrm{mc}\) | g_mc | mesophyll conductance to CO2 (T_leaf) | \(\mu\)mol / (m\(^2\) s Pa) | calculated |
\(g_\mathrm{mc}\) | g_mc25 | mesophyll conductance to CO2 (25 °C) | \(\mu\)mol / (m\(^2\) s Pa) | 4 |
\(g_\mathrm{sc}\) | g_sc | stomatal conductance to CO2 | \(\mu\)mol / (m\(^2\) s Pa) | 4 |
\(g_\mathrm{uc}\) | g_uc | cuticular conductance to CO2 | \(\mu\)mol / (m\(^2\) s Pa) | 0.1 |
\(J_\mathrm{max25}\) | J_max25 | potential electron transport (25 °C) | \(\mu\)mol CO2 / (m\(^2\) s) | 200 |
\(J_\mathrm{max}\) | J_max | potential electron transport (T_leaf) | \(\mu\)mol CO2 / (m\(^2\) s) | calculated |
\(k_\mathrm{mc}\) | k_mc | partition of \(g_\mathrm{mc}\) to lower mesophyll | none | 1 |
\(k_\mathrm{sc}\) | k_sc | partition of \(g_\mathrm{sc}\) to lower surface | none | 1 |
\(k_\mathrm{uc}\) | k_uc | partition of \(g_\mathrm{uc}\) to lower surface | none | 1 |
\(K_\mathrm{C25}\) | K_C25 | Michaelis constant for carboxylation (25 °C) | \(\mu\)mol / mol | 268.3 |
\(K_\mathrm{C}\) | K_C | Michaelis constant for carboxylation (T_leaf) | \(\mu\)mol / mol | calculated |
\(K_\mathrm{O25}\) | K_O25 | Michaelis constant for oxygenation (25 °C) | \(\mu\)mol / mol | 165084.2 |
\(K_\mathrm{O}\) | K_O | Michaelis constant for oxygenation (T_leaf) | \(\mu\)mol / mol | calculated |
\(\phi_J\) | phi_J | initial slope of the response of J to PPFD | none | 0.331 |
\(R_\mathrm{d25}\) | R_d25 | nonphotorespiratory CO2 release (25 °C) | \(\mu\)mol CO2 / (m\(^2\) s) | 2 |
\(R_\mathrm{d}\) | R_d | nonphotorespiratory CO2 release (T_leaf) | \(\mu\)mol CO2 / (m\(^2\) s) | calculated |
\(\theta_J\) | theta_J | curvature factor for light-response curve | none | 0.825 |
\(T_\mathrm{leaf}\) | T_leaf | leaf temperature | K | 298.15 |
\(V_\mathrm{c,max25}\) | V_cmax25 | maximum rate of carboxylation (25 °C) | \(\mu\)mol CO2 / (m\(^2\) s) | 150 |
\(V_\mathrm{c,max}\) | V_cmax | maximum rate of carboxylation (T_leaf) | \(\mu\)mol CO2 / (m\(^2\) s) | calculated |
\(V_\mathrm{tpu25}\) | V_tpu25 | rate of triose phosphate utilization (25 °C) | \(\mu\)mol CO2 / (m\(^2\) s) | 200 |
\(V_\mathrm{tpu}\) | V_tpu | rate of triose phosphate utilisation (T_leaf) | \(\mu\)mol CO2 / (m\(^2\) s) | calculated |
If use_tealeaves = TRUE
, additional parameters are:
Constants:
Symbol | R | Description | Units | Default |
\(c_p\) | c_p | heat capacity of air | J / (g K) | 1.01 |
\(R_\mathrm{air}\) | R_air | specific gas constant for dry air | J / (kg K) | 287.058 |
Environmental parameters:
Symbol | R | Description | Units | Default |
\(E_q\) | E_q | energy per mole quanta | kJ / mol | 220 |
\(f_\mathrm{PAR}\) | f_par | fraction of incoming shortwave radiation that is photosynthetically active radiation (PAR) | none | 0.5 |
\(r\) | r | reflectance for shortwave irradiance (albedo) | none | 0.2 |
\(T_\mathrm{air}\) | T_air | air temperature | K | 298.15 |
Leaf parameters:
Symbol | R | Description | Units | Default |
\(\alpha_\mathrm{l}\) | abs_l | absorbtivity of longwave radiation (4 - 80 \(\mu\)m) | none | 0.97 |
\(\alpha_\mathrm{s}\) | abs_s | absorbtivity of shortwave radiation (0.3 - 4 \(\mu\)m) | none | 0.50 |
\(g_\mathrm{sw}\) | g_sw | stomatal conductance to H2O | (\(\mu\)mol) / (m\(^2\) s Pa) | converted from \(g_\mathrm{sc}\) |
\(g_\mathrm{uw}\) | g_uw | cuticular conductance to H2O | (\(\mu\)mol) / (m\(^2\) s Pa) | converted from \(g_\mathrm{uc}\) |
\(\mathrm{logit}(sr)\) | logit_sr | stomatal ratio (logit transformed) | none | converted from \(k_\mathrm{sc}\) |
Buckley TN and Diaz-Espejo A. 2015. Partitioning changes in photosynthetic rate into contributions from different variables. Plant, Cell & Environment 38: 1200-11.
bake_par <- make_bakepar()
constants <- make_constants(use_tealeaves = FALSE)
enviro_par <- make_enviropar(use_tealeaves = FALSE)
leaf_par <- make_leafpar(use_tealeaves = FALSE)
leaf_par <- make_leafpar(
replace = list(
g_sc = set_units(3, "umol/m^2/s/Pa"),
V_cmax25 = set_units(100, "umol/m^2/s")
), use_tealeaves = FALSE
)
Run the code above in your browser using DataLab