Learn R Programming

photosynthesis (version 2.1.5)

FvCB: Farquhar-von Caemmerer-Berry (FvCB) C3 photosynthesis model

Description

Farquhar-von Caemmerer-Berry (FvCB) C3 photosynthesis model

Rubisco-limited assimilation rate

RuBP regeneration-limited assimilation rate

TPU-limited assimilation rate

Usage

FvCB(C_chl, pars, unitless = FALSE)

W_carbox(C_chl, pars, unitless = FALSE)

W_regen(C_chl, pars, unitless = FALSE)

W_tpu(C_chl, pars, unitless = FALSE)

Value

A list of four values with units umol CO2 / (m^2 s) of class units:

  • W_carbox: Rubisco-limited assimilation rate

  • W_regen: RuBP regeneration-limited assimilation rate

  • W_tpu: TPU-limited assimilation rate

  • A: minimum of W_carbox, W_regen, and W_tpu

Arguments

C_chl

Chloroplastic CO2 concentration in Pa of class units

pars

Concatenated parameters (leaf_par, enviro_par, and constants)

unitless

Logical. Should units be set? The function is faster when FALSE, but input must be in correct units or else results will be incorrect without any warning.

Details

Equations following Buckley and Diaz-Espejo (2015):

Rubisco-limited assimilation rate:

$$W_\mathrm{carbox} = V_\mathrm{c,max} C_\mathrm{chl} / (C_\mathrm{chl} + K_\mathrm{m})$$

where:

$$K_\mathrm{m} = K_\mathrm{C} (1 + O / K_\mathrm{O})$$

RuBP regeneration-limited assimilation rate:

$$W_\mathrm{regen} = J C_\mathrm{chl} / (4 C_\mathrm{chl} + 8 \Gamma*)$$

where \(J\) is a function of PPFD, obtained by solving the equation:

$$0 = \theta_J J ^ 2 - J (J_\mathrm{max} + \phi_J PPFD) + J_\mathrm{max} \phi_J PPFD$$

TPU-limited assimilation rate:

$$W_\mathrm{tpu} = 3 V_\mathrm{tpu} C_\mathrm{chl} / (C_\mathrm{chl} - \Gamma*)$$

SymbolRDescriptionUnitsDefault
\(C_\mathrm{chl}\)C_chlchloroplastic CO2 concentrationPainput
\(\Gamma*\)gamma_starchloroplastic CO2 compensation point (T_leaf)Pacalculated
\(J_\mathrm{max}\)J_maxpotential electron transport (T_leaf)\(\mu\)mol CO2 / (m\(^2\) s)calculated
\(K_\mathrm{C}\)K_CMichaelis constant for carboxylation (T_leaf)\(\mu\)mol / molcalculated
\(K_\mathrm{O}\)K_OMichaelis constant for oxygenation (T_leaf)\(\mu\)mol / molcalculated
\(O\)Oatmospheric O2 concentrationkPa21.27565
\(\phi_J\)phi_Jinitial slope of the response of J to PPFDnone0.331
PPFDPPFDphotosynthetic photon flux densityumol quanta / (m^2 s)1500
\(R_\mathrm{d}\)R_dnonphotorespiratory CO2 release (T_leaf)\(\mu\)mol CO2 / (m\(^2\) s)calculated
\(\theta_J\)theta_Jcurvature factor for light-response curvenone0.825
\(V_\mathrm{c,max}\)V_cmaxmaximum rate of carboxylation (T_leaf)\(\mu\)mol CO2 / (m\(^2\) s)calculated
\(V_\mathrm{tpu}\)V_tpurate of triose phosphate utilization (T_leaf)\(\mu\)mol CO2 / (m\(^2\) s)calculated

References

Buckley TN and Diaz-Espejo A. 2015. Partitioning changes in photosynthetic rate into contributions from different variables. Plant, Cell & Environment 38: 1200-11.

Farquhar GD, Caemmerer S, Berry JA. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 78–90.

Examples

Run this code
bake_par = make_bakepar()
constants = make_constants(use_tealeaves = FALSE)
enviro_par = make_enviropar(use_tealeaves = FALSE)
leaf_par = make_leafpar(use_tealeaves = FALSE)
leaf_par = bake(leaf_par, enviro_par, bake_par, constants)

pars = c(leaf_par, enviro_par, constants)
C_chl = set_units(246.0161, umol / mol)
FvCB(C_chl, pars)

Run the code above in your browser using DataLab