## See the example in 'help(Cigar)' in order to take a look at the
## data set 'Cigar'
##########
## DATA ##
##########
data(Cigar)
## Panel-Dimensions:
N <- 46
T <- 30
## Dependent variable:
## Cigarette-Sales per Capita
l.Consumption <- log(matrix(Cigar$sales, T,N))
d.l.Consumption <- diff(l.Consumption)
## Independent variables:
## Consumer Price Index
cpi <- matrix(Cigar$cpi, T,N)
## Real Price per Pack of Cigarettes
l.Price <- log(matrix(Cigar$price, T,N)/cpi)
d.l.Price <- diff(l.Price)
## Real Disposable Income per Capita
l.Income <- log(matrix(Cigar$ndi, T,N)/cpi)
d.l.Income <- diff(l.Income)
#####################################################################
## Testing the Sufficiency of a classical 'twoways' effects model: ##
## Hausman-type Test of Bai (2009) ##
#####################################################################
## Model under the null Hypothesis:
twoways.obj <- Eup(d.l.Consumption ~ -1 + d.l.Price + d.l.Income,
factor.dim = 0, additive.effects = "twoways")
## Model under the alternative Hypothesis:
not.twoways.obj <- Eup(d.l.Consumption ~ -1 + d.l.Price + d.l.Income,
factor.dim = 2, additive.effects = "none")
###########
## Test: ##
###########
## (This test returns an error message, since the (unobserved) true
## factor dimension is probably greater than 2.)
## Not run:
# checkSpecif(obj1 = twoways.obj, obj2 = not.twoways.obj, level = 0.01)
# ## End(Not run)
#####################################################################
## Testing the Existence of additional (unobserved) common Factors ##
## Specification Test of Kneip, Sickles, and Song (2012) ##
#####################################################################
## For the model of Bai (2009):
Eup.obj <- Eup(d.l.Consumption ~ -1 + d.l.Price + d.l.Income,
additive.effects = "twoways")
## Test:
checkSpecif(Eup.obj, level = 0.01)
## For the model of Kneip, Sickles, and Song (2012):
KSS.obj <- KSS(l.Consumption ~ -1 + l.Price + l.Income,
additive.effects = "twoways")
## Test:
checkSpecif(KSS.obj, level = 0.01)
Run the code above in your browser using DataLab