Usage
extrp.pi0(dat,slope.constraint=TRUE, gamma2.range=2^c(-4,3),
rate.margin=c(0.5,0.5), plotit=TRUE)
extrp.pi0.only(n1,n2,y,gam2)
extrp.pi0.slope(n1,n2,y,gam2,eps=1e-5)
extrp.pi0.rate(n1,n2,y,gam2,rate.interval=c(.3,2),eps=1e-5)
extrp.pi0.both(n1,n2,y,gam2,rate.interval=c(.3,2),eps=1e-5)
extrp.pi0.gam2(n1,n2,y,gam2.interval=c(1e-3,6))
extrp.pi0.slope.gam2(n1,n2,y,gam2.interval=c(1e-3,6),eps=1e-5)
extrp.pi0.rate.gam2(n1,n2,y,gam2.interval=c(1e-3,6),rate.interval=c(.3,2),eps=1e-5)
extrp.pi0.both.gam2(n1,n2,y,gam2.interval=c(1e-3,6),rate.interval=c(.3,2),eps=1e-5)
Arguments
dat
an object of class subt
; typically resulting from calling the function subt
. slope.constraint
logical: whether slope $a$ should be constrained to be positive
gamma2.range, gam2.interval
a numeric vector of length 2, defining the appropriate range of the gamma square parameter. When they are equal, it is assumed as known.
rate.margin
a numeric vector of length 2, defining the margin of $c$ parameter. When they are equal, it is assumed as known.
plotit
logical: whether plot should be produced
n1,n2
subsample size vectors for each of the two treatment groups.
y
a numeric vector of estimated pi0 at the corresponding subsample sizes.
gam2
gamma square value, assumed to be known.
rate.interval
a numeric vector of length 2 defining the appropriate range of rate parameter.
eps
a small number of tolerance.