nparncpt(tstat, df, ...)
nparncpt.sqp(tstat, df, penalty=c('3rd.deriv','2nd.deriv','1st.deriv'), lambdas=10^seq(-1,5,by=1),
starts, IC=c('BIC','CAIC','HQIC','AIC'), K=100, bounds=quantile(tstat,c(.01,.99)),
solver=c('solve.QP','lsei','ipop','LowRankQP'),plotit=FALSE, verbose=FALSE, approx.hess=TRUE, ... )
1st.deriv
) or second-order derivatives (2nd.deriv
)
of the estimated density function of ncp. Note that only the first element is used.lambda
to be tried. The one that minimizes NIC will be chosen.parncpt
will be called with zeromean
set to FALSE
to get an initial esimate of pi0
. And the starting values (theta
) will be set allAIC
, BIC
, CAIC
, HQIC
, specifying the factor multiplied to the ENP in computing Information Criterion (IC).ipop
and kernlab
are not very reliable. solve.QP
is faster but lsei
is more stable.plot.nparncpt
should be called after estimation. This is always recommended before accepting the results.TRUE
, extensive messages will be printed.TRUE
,
for the kth Gaussian basis function and the gth tstat
, the marginal t-statistic density evaluated dtn.mix
. Usually, the approximation
argument.c("nparncpt", "ncpest")
logLik
. The associated df
is the estimated effective number of parameters (enp). The log likelihood is also penalized likelihood. See also logLik.ncpest
and AIC
.theta
tstat
and df
lambdas
that minimizes NIClambdas
argument itselfnparncpt
is a wrapper for nparncpt.sqp
, the latter of which uses a sequential quadratic programming algorithm to find the mixing proportions
of the basis Gaussian density functions.parncpt
, sparncpt
,
fitted.nparncpt
, plot.nparncpt
, summary.nparncpt
,
coef.ncpest
, logLik.ncpest
, vcov.ncpest
,
AIC
, dncp
data(simulatedTstat)
(npfit=nparncpt(tstat=simulatedTstat, df=8));
(pfit=parncpt(tstat=simulatedTstat, df=8, zeromean=FALSE)); plot(pfit)
(pfit0=parncpt(tstat=simulatedTstat, df=8, zeromean=TRUE)); plot(pfit0)
(spfit=sparncpt(npfit,pfit)); plot(spfit)
Run the code above in your browser using DataLab