parncpt(tstat, df, zeromean = TRUE, ...)
parncpt.bfgs.0mean(tstat, df, starts, grids, approximation = "int2", ...)
parncpt.bfgs.non0mean(tstat, df, starts, grids, approximation = "int2", ...)
parncpt.momeff(tstat,n1,n2=n1,zeromean,gamma2,lower.df=6.1,upper.df=100,approx=TRUE)
TRUE
, then mean of noncentrality parameters is assumed to be zero and is not estimated.optim
lower
, upper
, ngrid
) defining the grids to be searched in find a good starting value.
Each component is a numeric vector of the same length as the number of parameters. lower
int2
is exact for integer df, but interpolate to fractional df.
'laplace' is the laplacian approximation; 'saddlepoint' is the saddlepoint approximation; 'none' computes the (sort of) exacclass
attribute being c('parncpt', 'ncpest')
.tstat
and df
logLik
. Call logLik.ncpest
to extract. Similarly, AIC
is callable.coef.ncpest
to extract.parncpt
calls either parncpt.bfgs.0mean
or parncpt.bfgs.non0mean
, depending whether zeromean
is TRUE
or FALSE
.
Both parncpt.bfgs.0mean
and parncpt.bfgs.non0mean
use the 'L-BFGS-B' algorithm by calling optim
. All gradiants are analytical, but the Hessian is only numerical approximation.
The first parmater is always pi0
, i.e., the proportion of true null hypotheses; the last parameter is always the standard deviation of noncentrality parameters;
for parncpt.bfgs.non0mean
the middle parameter is the mean of noncentrality parameters, whereas for parncpt.bfgs.0mean
the mean is set to 0 a priori.sparncpt
, nparncpt
,
fitted.parncpt
, plot.parncpt
, summary.parncpt
,
coef.ncpest
, logLik.ncpest
, vcov.ncpest
,
AIC
, dncp
data(simulatedTstat)
(npfit=nparncpt(tstat=simulatedTstat, df=8));
(pfit=parncpt(tstat=simulatedTstat, df=8, zeromean=FALSE)); plot(pfit)
(pfit0=parncpt(tstat=simulatedTstat, df=8, zeromean=TRUE)); plot(pfit0)
(spfit=sparncpt(npfit,pfit)); plot(spfit)
Run the code above in your browser using DataLab