Learn R Programming

pi0 (version 1.3-250)

sparncpt: Semiparametric density estimation for noncentrality parameters

Description

Semiparametric density estimation for noncentrality parameters using the combination method of Olkin and Spiegelman (1987), based on fits from both parncpt and nparncpt.

Usage

sparncpt(obj1, obj2, ...)
## S3 method for class 'parncpt':
sparncpt(obj1, obj2, ...)
## S3 method for class 'nparncpt':
sparncpt(obj1, obj2, ...)
## S3 method for class 'numeric':
sparncpt(obj1, obj2, ...)

Arguments

obj1, obj2
Case 1: obj1 and obj2 are of class parncpt and nparncpt respectively; or vice versa; Case 2: obj1 is a numeric ve
...
other arguments passed to dtn.mix, most notably the approximation argument.

Value

  • a list with class c('sparncpt','ncpest'):
  • pi0estimated proportion of true nulls
  • mu.ncpmean of ncp
  • sd.ncpSD of ncp
  • logLikan object of class logLik. The associated df is the estimated effective number of parameters (enp). The log likelihood is also penalized likelihood. See also logLik.ncpest and AIC.
  • enpestimated ENP
  • parestimated mixing proportion rho
  • gradiantanalytic gradiant at the estimate (not implemented)
  • hessiananalytic hessian at the estimate (not implemented)
  • parfitthe fitted parncpt object
  • nparfitthe fitted nparncpt object

Details

This is a two-component mixture of a parametric fit from parncpt and a nonparametric fit from nparncpt, with mixing proportion rho. If obj1 and obj2 are t-statistics and degrees of freedom respectively, calls to each of parncpt and nparncpt are made and their results are used in combination.

References

I. Olkin and C. H. Spiegelman. (1987) A Semiparametric Approach to Density Estimation. Journal of the American Statistical Association. 82,399,858--865 Qu L, Nettleton D, Dekkers JCM. (2012) Improved Estimation of the Noncentrality Parameter Distribution from a Large Number of $t$-statistics, with Applications to False Discovery Rate Estimation in Microarray Data Analysis. Biometrics (in press).

See Also

parncpt, nparncpt, fitted.sparncpt, plot.sparncpt, summary.sparncpt, coef.ncpest, logLik.ncpest, vcov.ncpest, AIC, dncp

Examples

Run this code
data(simulatedTstat)
(npfit=nparncpt(tstat=simulatedTstat, df=8)); 
(pfit=parncpt(tstat=simulatedTstat, df=8, zeromean=FALSE)); plot(pfit)
(pfit0=parncpt(tstat=simulatedTstat, df=8, zeromean=TRUE)); plot(pfit0)
(spfit=sparncpt(npfit,pfit)); plot(spfit)

Run the code above in your browser using DataLab