Learn R Programming

pickgene (version 1.44.0)

em.ggb: EM calculation for Gamma-Gamma-Bernoulli Model

Description

The function plots contours for the odds that points on microarray show differential expression between two conditions (e.g. Cy3 and Cy5 dye channels on the same microarray).

Usage

em.ggb(x, y, theta, start = c(2,1.2,2.7), pprior = 2, printit = FALSE, tol = 1e-9, offset = 0 )

Arguments

x
first condition expression levels
y
second condition expression levels
theta
four parameters a,a0,nu,p
start
starting estimates for theta
pprior
Beta hyperparameter for prob p of differential expression
printit
print iterations if TRUE
tol
parameter tolerance for convergence
offset
offset added to xx and yy before taking log (can help with negative adjusted values)

Value

Four parameter vector theta after convergence.

Details

Fit Gamma/Gamma/Bernoulli model (equal marginal distributions) The model has spot intensities x ~ Gamma(a,b); y ~ Gamma(a,c). The shape parameters b and c are ~ Gamma(a0,nu). With probability p, b = c; otherwise b != c. All spots are assumed to be independent.

References

MA Newton, CM Kendziorski, CS Richmond, FR Blattner and KW Tsui (2000) ``On differential variability of expression ratios: improving statistical inference about gene expression changes from microarray data,'' J Computational Biology 00: 000-000.

See Also

oddsplot

Examples

Run this code
## Not run: 
# em.ggb( x, y )
# ## End(Not run)

Run the code above in your browser using DataLab