Learn R Programming

pickgene (version 1.44.0)

pickgene: Plot and Pick Genes based on Differential Expression

Description

The function picks plots the average intensity versus linear contrasts (currently linear, quadratic up to cubic) across experimental conditions. Critical line is determine according to Bonferroni-like multiple comparisons, allowing SD to vary with intensity.

Usage

pickgene(data, geneID = 1:nrow(data), overalllevel = 0.05, npickgene = -1, marginal = FALSE, rankbased = TRUE, allrank = FALSE, meanrank = FALSE, offset = 0, modelmatrix = model.pickgene(faclevel, facnames, contrasts.fac, collapse, show, renorm), faclevel = ncol(data), facnames = letters[seq(length(faclevel))], contrasts.fac = "contr.poly", show = NULL, main = "", renorm = 1, drop.negative = FALSE, plotit = npickgene < 1, mfrow  = c(nr, nc), mfcol = NULL, ylab = paste(shownames, "Trend"), ...)

Arguments

data
data matrix
geneID
gene identifier (default 1:nrow(x))
overalllevel
overall significance level (default 0.05)
npickgene
number of genes to pick (default -1 allows automatic selection)
marginal
additive model if TRUE, include interactions if FALSE
rankbased
use ranks if TRUE, log tranform if FALSE
allrank
rank all chips together if true, otherwise rank separately
meanrank
show mean abundance as rank if TRUE
offset
offset for log transform
modelmatrix
model matrix with first row all 1's and other rows corresponding to design contrasts; automatically created by call to model.pickgene if omitted
faclevel
number of factor levels for each factor
facnames
factor names
contrasts.fac
type of contrasts
show
vector of contrast numbers to show (default is all)
main
vector of main titles for plots (default is none)
renorm
vector to renormalize contrasts (e.g. use sqrt(2) to turn two-condition contrast into fold change)
drop.negative
drop negative values in log transform
plotit
plot if TRUE
mfrow
par() plot arrangement by rows (default up to 6 per page; set to NULL to not change)
mfcol
par() plot arrangement by columns (default is NULL)
ylab
vertical axis labels
...
parameters for robustscale

Value

Data frame containing significant genes with the following information:
pick
data frame with picked genes
score
data frame with center and spread for plotting
Each of these is a list with elements for each contrast. The pick data frame elements have the following information:
probe
gene identifier
average
average gene intensity
fold1
positive fold change
fold2
negative fold change
pvalue
Bonferroni-corrected p-value
The score data frame elements have the following:
x
mean expression level (antilog scale)
y
contrast (antilog scale)
center
center for contrast
scale
scale (spread) for contrast
lower
lower test limit
upper
upper test limit

Details

Infer genes that differentially express across conditions using a robust data-driven method. Adjusted gene expression levels A are replaced by qnorm(rank(A)), followed by robustscale estimation of center and spread. Then Bonferroni-style gene by gene tests are performed and displayed graphically.

References

Y Lin, BS Yandell and ST Nadler (2000) ``Robust Data-Driven Inference for Gene Expression Microarray Experiments,'' Technical Report, Department of Statistics, UW-Madison.

See Also

pickgene

Examples

Run this code
## Not run: 
# pickgene( data )
# ## End(Not run)

Run the code above in your browser using DataLab