Learn R Programming

pimeta (version 1.0.1)

htsdl: Higgins-Thompson-Spiegelhalter prediction interval with the Dersimonian-Laird estimator for \(\hat{\tau}\)

Description

Higgins-Thompson-Spiegelhalter prediction interval with the Dersimonian-Laird estimator for \(\hat{\tau}\)

Usage

htsdl(y, sigma, alpha = 0.05)

Arguments

y

the effect size estimates vector

sigma

the within studies variances vector

alpha

the alpha level of the prediction interval

Value

The average treatment effect estimate \(\hat{\mu}\) (muhat), the lower and upper prediction limits \(\hat{c}_l\) (lpi) and \(\hat{c}_u\) (upi), the DL estimator for \(\hat{\tau}\) (tau2h).

References

Higgins, J. P. T, Thompson, S. G., Spiegelhalter, D. J. (2009). A re-evaluation of random-effects meta-analysis. J R Stat Soc Ser A Stat Soc. 172(1): 137-159.

Examples

Run this code
# NOT RUN {
data(sbp, package = "pimeta")
pimeta::htsdl(sbp$y, sbp$sigmak)
# $muhat
# [1] -0.3340597
# $lbpi
# [1] -0.7597777
# $ubpi
# [1] 0.09165839
# $tau2h
# [1] 0.02824971
# }

Run the code above in your browser using DataLab