Learn R Programming

pinbasic (version 0.2.0)

initial_vals: Initial values for PIN optimization

Description

Generates set(s) of initial values which can be used in PIN optimization routines.

Usage

initial_vals(numbuys = NULL, numsells = NULL, method = c("Grid", "HAC", "HAC_Ref"), length = 5, num_clust = 5, details = FALSE)

Arguments

numbuys
numeric vector of daily buys
numsells
numeric vector of daily sells
method
character Switch between algorithms for generating initial values, valid choices are: 'Grid', 'HAC' and 'HAC_Ref'
length
numeric length of equidistant sequence from 0.1 to 0.9 for parameters of grid search algorithm, defaults to 5, irrelevant for HAC and refined HAC method
num_clust
numeric only relevant for refined HAC method, total number of clusters trading data is grouped into equals num_clust + 1
details
logical only relevant for grid search, if TRUE and method = 'Grid' the number of infeasible sets of initial values are returned,

Value

Matrix with set(s) of initial values for PIN model optimization. If method = 'Grid' and details = TRUE a list with four elements is returned:

References

Ersan, Oguz and Alici, Asli (2016) An unbiased computation methodology for estimating the probability of informed trading (PIN) Journal of International Financial Markets, Institutions and Money, Volume 43, pp. 74 - 94 \Sexpr[results=rd,stage=build]{tools:::Rd_expr_doi("#1")}10.1016/j.intfin.2016.04.001http://doi.org/10.1016/j.intfin.2016.04.001doi:\ifelse{latex}{\out{~}}{ }latex~ 10.1016/j.intfin.2016.04.001

Gan, Quan et al. (2015) A faster estimation method for the probability of informed trading using hierarchical agglomerative clustering Quantitative Finance, Volume 15, Issue 11, pp. 1805 - 1821 \Sexpr[results=rd,stage=build]{tools:::Rd_expr_doi("#1")}10.1080/14697688.2015.1023336http://doi.org/10.1080/14697688.2015.1023336doi:\ifelse{latex}{\out{~}}{ }latex~ 10.1080/14697688.2015.1023336

Yan, Yuxing and Zhang, Shaojun (2012) An improved estimation method and empirical properties of the probability of informed trading Journal of Banking & Finance, Volume 36, Issue 2, pp. 454 - 467 \Sexpr[results=rd,stage=build]{tools:::Rd_expr_doi("#1")}10.1016/j.jbankfin.2011.08.003http://doi.org/10.1016/j.jbankfin.2011.08.003doi:\ifelse{latex}{\out{~}}{ }latex~ 10.1016/j.jbankfin.2011.08.003

Examples

Run this code
# Loading simulated datasets

data("BSinfrequent")
data("BSfrequent")
data("BSheavy")

# Grid Search

grid <- initial_vals(numbuys = BSinfrequent[,"Buys"],
                     numsells = BSinfrequent[,"Sells"],
                     method = "Grid")

# Grid Search: Detailed Output

grid_detailed <- initial_vals(numbuys = BSinfrequent[,"Buys"],
                              numsells = BSinfrequent[,"Sells"],
                              method = "Grid", details = TRUE)

# HAC

hac <- initial_vals(numbuys = BSfrequent[,"Buys"],
                    numsells = BSfrequent[,"Sells"],
                    method = "HAC")

# Refined HAC

hac_ref <- initial_vals(numbuys = BSheavy[,"Buys"],
                        numsells = BSheavy[,"Sells"],
                        method = "HAC_Ref")

Run the code above in your browser using DataLab