#* Descriptors for lm output with no interactions
mtcars2 <- mtcars
Hmisc::label(mtcars2$mpg) <- "Gas Mileage"
Hmisc::label(mtcars2$qsec) <- "Quarter Mile Time"
Hmisc::label(mtcars2$am) <- "Transmission"
Hmisc::label(mtcars2$wt) <- "Weight"
Hmisc::label(mtcars2$gear) <- "Gears"
#* Basic Output for a model with no interactions
#* Note: numeric_level has no impact as there are no
#* interactions involving numeric variables.
fit <- lm(mpg ~ qsec + factor(am) + wt + factor(gear), data = mtcars2)
pixiedust:::tidy_levels_labels(fit,
descriptors = c("term", "term_plain", "label", "level", "level_detail"),
numeric_level = "term")
#* Assign factors ahead of the model. This allows
#* the user to determine the levels that display.
#* Compare the output for 'am' with the output for 'gear'
mtcars2$am <- factor(mtcars2$am, 0:1, c("Automatic", "Manual"))
Hmisc::label(mtcars2$am) <- "Transmission" # Label was lost in variable conversion
fit <- lm(mpg ~ qsec + am + wt + factor(gear), data = mtcars2)
pixiedust:::tidy_levels_labels(fit,
descriptors = c("term", "term_plain", "label", "level", "level_detail"),
numeric_level = "term")
#* Include an interaction between a factor and numeric.
fit <- lm(mpg ~ qsec + am * wt + factor(gear), data = mtcars2)
pixiedust:::tidy_levels_labels(fit,
descriptors = c("term", "term_plain", "label", "level", "level_detail"),
numeric_level = "term")
#* Now observe how 'level' and 'level_detail' change
#* in the interaction terms as we choose different
#* values for 'numeric_level'
pixiedust:::tidy_levels_labels(fit,
descriptors = c("term", "term_plain", "label", "level", "level_detail"),
numeric_level = "term_plain")
pixiedust:::tidy_levels_labels(fit,
descriptors = c("term", "term_plain", "label", "level", "level_detail"),
numeric_level = "label")
Run the code above in your browser using DataLab