Computes the k-monotone discrete splines from Lefevre and Loisel (2013).
Usage
BaseNorm(k, J)
Value
matrix \(Q\) with J+1 rows and J+1 columns with \(Q(i,j)=Q_j^k(i-1)=C_{j-i+k-1}^{k-1}\), where \(C\) represents the binomial coefficient.
Arguments
k
Degree of monotony
J
maximum support of the splines
Author
Jade Giguelay
References
Giguelay, J., (2016),
Estimation of a discrete distribution under k-monotony constraint,
in revision, (arXiv:1608.06541)
Lefevre C., Loisel S. (2013) <DOI:10.1239/jap/1378401239>
On multiply monotone distributions, continuous or discrete, with applications,
Journal of Applied Probability, 50, 827--847.