powered by
k-Knots of a discrete function.
kKnot(p, k)
Vector with the k-knots of p.
Vector
Degree of the knots
Jade Giguelay
An integer i is a k-knot of p if \(\Delta^k p(i) >0\), where \(\Delta^k\) is the k-th Laplacian of the sequence p.
Knopp K. (1925), <DOI:10.1007/BF01479598> Mehrfach monotone Zahlenfolgen, Mathematische Zeitschrift, 22, 75--85
Giguelay, J., (2016), Estimation of a discrete distribution under k-monotony constraint, in revision, (arXiv:1608.06541)
Delta
p=dmixSpline(c(5, 10, 20), k=3, c(0.5, 0.25, 0.25)) knots=kKnot(p, 3)
Run the code above in your browser using DataLab