Learn R Programming

plRasch (version 1.0)

llla: Fit Log Linear by Linear Association Models

Description

This function fits log linear by linear association models using pseudolikelihood method.

Usage

llla(data, item.mtx=rep(1, ncol(data)), trait.mtx=1, useMLE=FALSE, uncorrected=FALSE)

Arguments

data
is a data frame or matrix with rows indicating individuals and columns indicating items and the values indicating the choices.
item.mtx
is the adjacency matrix between items and the latent traits
trait.mtx
is the adjacency matrix for latent traits
useMLE
inidicates whether maximum likelihood estimation is used
uncorrected
if the value is TRUE, calculate the uncorrected standard errors

Value

coefficients
the parameter estimates in the LLLA model
se
the standard error of coefficient esimates(sandwich estimator)
covb
the covariance matrix of the coefficient esimates
se.uncorrected
the standard error not corrected
ncat
number of categories
nexaminee
number of examinees
nitem
number of items

References

Anderson, C.J., Li, Z., & Vermunt, J.K. (2007). Estimation of models in the Rasch family for polytomous items and multiple latent variables. Journal of Statistical Software, 20.

See Also

simRasch

Examples

Run this code
NCAT <- 2;
NITEM <- 4;
NEXAMINEE <- 50;
BETA <- c(-1, 0, 0.5, 1)
set.seed(1);
rasch.sim <- simRasch(ncat=NCAT, nitem=NITEM, nexaminee=NEXAMINEE, beta=BETA)
sim.data <- rasch.sim$data
colnames(sim.data) <- paste("I", 1:NITEM, sep='')

## The model item adjacency matrix and the latent trait adjacency matrix
item.mtx <- rep(1, NITEM);
trait.mtx <- 1;

### MLE of log-multiplicative Assoc. Model
mlfit <- llla(sim.data, item.mtx, trait.mtx, useMLE=TRUE)
mlfit

#### PLE of log-multiplicative Assoc. Model
plfit <- llla(sim.data, item.mtx, trait.mtx)
plfit

Run the code above in your browser using DataLab